期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电动力强化对微生物修复石油污染土壤的影响 被引量:2
1
作者 朱妍 赵敏 +1 位作者 杨琴 任鹏 《油气田环境保护》 CAS 2016年第3期21-25,61,共5页
将电动力强化作为一种手段应用于微生物修复含油土壤,即在外加电场的作用下,找到合适作用条件,结合微生物处理成本较低、操作简单易行等特点,实现两者的耦合技术,以对油泥进行深度处理。探讨了电场对油泥中NO_3^-、SO_4^(2-)等带电离子... 将电动力强化作为一种手段应用于微生物修复含油土壤,即在外加电场的作用下,找到合适作用条件,结合微生物处理成本较低、操作简单易行等特点,实现两者的耦合技术,以对油泥进行深度处理。探讨了电场对油泥中NO_3^-、SO_4^(2-)等带电离子以及石油烃在电场作用下的分布特征对微生物作用方式和除油效果的影响;研究了营养液传输损失的过程规律及优化与补给方案,把营养液一次性补给到修复系统中,节约人力;分析了微生物种群伴随迁移特征及原位活性损失的补给,论证了活性补给方案的可行性。 展开更多
关键词 石油污染土壤 电动力强化 微生物修复
下载PDF
电动力强化植物修复土壤重金属的研究进展 被引量:7
2
作者 马科峰 王海芳 +1 位作者 卢静 王改玲 《应用化工》 CAS CSCD 北大核心 2019年第3期709-712,716,共5页
由植物修复优缺点出发,介绍了电动强化技术及其作用机理,总结了影响强化效率的各个参数,并指出了该技术存在的问题及研究方向。随着不断地完善和发展,电动力强化技术将会在植物修复领域发挥重要作用。
关键词 电动力强化 植物修复 土壤修复 重金属
下载PDF
Supervisory control of the hybrid off-highway vehicle for fuel economy improvement using predictive double Q-learning with backup models
3
作者 SHUAI Bin LI Yan-fei +2 位作者 ZHOU Quan XU Hong-ming SHUAI Shi-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2266-2278,共13页
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi... This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme. 展开更多
关键词 supervisory charge-sustaining control hybrid electric vehicle reinforcement learning predictive double Q-learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部