A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorize...A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.展开更多
A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control...A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.展开更多
The changes in vibration, sound, and sound quality with changes in the driving voltage of a power seat motor from 12.5 to 14.5 V were measured and analyzed, which was used in real vehicles. BSR(buzz, squeak, rattle), ...The changes in vibration, sound, and sound quality with changes in the driving voltage of a power seat motor from 12.5 to 14.5 V were measured and analyzed, which was used in real vehicles. BSR(buzz, squeak, rattle), which occurs for the power seat mechanism during sliding operation, was also evaluated. In addition, the results were expressed in terms of sound quality metrics, which measure the RPM change and sound level versus voltage to analyze their statistical correlation. Furthermore, vibration measurement and analysis were conducted simultaneously to determine the noisiest conditions and the source of the noise. The changes in RPM and voltage of a motor, in addition to vibration and noise, were measured at the same time to determine how noise, RPM, and voltage are interrelated.展开更多
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2011-2012
文摘A design and verification of linear state observers which estimate state information such as angular velocity and load torque for retraction control of the motorized seat belt (MSB) system were described. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. Each MSB function has its own required belt tension which is determined by the function's purpose. To realize the MSB functions, state information, such as seat belt winding velocity and seat belt tension are required. Using a linear state observer, the state information for MSB operations can be estimated without sensors. To design the linear state observer, the motorized seat belt system is analyzed and represented as a state space model which contains load torque as an augmented state. Based on the state space model, a linear state observer was designed and verified by experiments. Also, the retraction control of the MSB algorithm using linear state observer was designed and verified on the test bench. With the designed retraction control algorithm using the linear state observer, it is possible to realize various types of MSB functions.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.30970875,No.90920015,No.61172008 and No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.
基金supported by the research grant of AMPRIC & RIGCT in Kongju National University, Korea
文摘The changes in vibration, sound, and sound quality with changes in the driving voltage of a power seat motor from 12.5 to 14.5 V were measured and analyzed, which was used in real vehicles. BSR(buzz, squeak, rattle), which occurs for the power seat mechanism during sliding operation, was also evaluated. In addition, the results were expressed in terms of sound quality metrics, which measure the RPM change and sound level versus voltage to analyze their statistical correlation. Furthermore, vibration measurement and analysis were conducted simultaneously to determine the noisiest conditions and the source of the noise. The changes in RPM and voltage of a motor, in addition to vibration and noise, were measured at the same time to determine how noise, RPM, and voltage are interrelated.