期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种改进多尺度融合的电动汽车充电口识别方法
1
作者 赵晓东 刘瑞庆 +1 位作者 王向 温士涛 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期118-126,共9页
针对无人自动充电桩工作过程中背景复杂导致电动汽车充电口识别精度低等问题,提出基于改进YOLOv5算法的一种电动汽车充电口识别方法。采用融入加权双向特征金字塔结构增强不同层级间的信息融合能力;引入GhostNet网络结构中的深度可分离... 针对无人自动充电桩工作过程中背景复杂导致电动汽车充电口识别精度低等问题,提出基于改进YOLOv5算法的一种电动汽车充电口识别方法。采用融入加权双向特征金字塔结构增强不同层级间的信息融合能力;引入GhostNet网络结构中的深度可分离卷积GhostConv,替代原模型中的特征提取网络中的普通卷积层,减小了模型的计算开销;主干网络中使用SENet结构增加感受野信息,提高模型对充电口特征的提取能力;同时改进模型损失函数,引入EIoU损失函数代替原始CIoU损失函数,提高边界框回归精度。实验结果表明:改进后的模型在自制的多样化电动汽车充电口数据集上相较于原始YOLOv5算法在模型体积上减小了6.94 MB,检测精度提升到94.75%。同时与目前主流的检测算法对比,检测精度与检测速度也具有一定的优越性,适用于复杂背景环境下的电动汽车充电口的目标检测。 展开更多
关键词 图像处理 目标检测 电动汽车充电口 注意力机制 多尺度融合 YOLOv5
下载PDF
基于深度学习的远距离汽车充电口定位研究
2
作者 张晓勇 全朋坤 赵凌宇 《自动化技术与应用》 2023年第3期40-44,共5页
随着电动汽车和自动驾驶技术的发展,电动汽车充电逐渐迈向自动化,充电口的识别定位是实现自动充电口的基础。以单目视觉为基础,提出一种远距离下电动汽车充电口目标识别方法。利用yolov5目标识别算法,建立复杂环境下远距离电动汽车充电... 随着电动汽车和自动驾驶技术的发展,电动汽车充电逐渐迈向自动化,充电口的识别定位是实现自动充电口的基础。以单目视觉为基础,提出一种远距离下电动汽车充电口目标识别方法。利用yolov5目标识别算法,建立复杂环境下远距离电动汽车充电口图像数据集,得到充电口的卷积神经网络识别模型,测试不同距离下充电口的识别定位效果,总体识别定位成功率为98.7%。可以更好的实现远距离识别定位的要求。 展开更多
关键词 电动汽车充电口 远距离定位 深度学习 单目视觉
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部