DC DC convertors can convert the EV's high voltage DC power supply into the low voltage DC power supply. In order to design an excellent convertor one must be guided by theory of automatic control. The principl...DC DC convertors can convert the EV's high voltage DC power supply into the low voltage DC power supply. In order to design an excellent convertor one must be guided by theory of automatic control. The principle and the method of design, modeling and control for DC DC convertors of EV are introduced. The method of the system response to a unit step function input and the frequency response method are applied to researching the convertor's mathematics model and control characteristic. Experiments show that the designed DC DC convertor's output voltage precision is high, the antijamming ability is strong and the adjustable performance is fast and smooth.展开更多
This article gives an overview of the main passive solutions and active techniques, based on AC switches to limit inrush currents in medium power AC-DC converters (up to 3.7 kW) for electric vehicle charging systems...This article gives an overview of the main passive solutions and active techniques, based on AC switches to limit inrush currents in medium power AC-DC converters (up to 3.7 kW) for electric vehicle charging systems. In particular, a strategy, based on SCR (silicon controlled rectifier) phase, shift control in a mixed rectifier bridge with diodes and thyristors, is proposed. The challenge is to help designers optimize the triggering delay of SCRs to both limit the peak value of inrush current spikes and optimize the charge duration of the DC-link capacitor. A mathematical model (Mathcad engineering tool) has been defined to point out, the interest of a variable triggering delay to control SCRs to meet the expectations described previously. Experimental measurements using an industrial evaluation board of the AC-DC converter demonstrate the robustness of the method.展开更多
文摘DC DC convertors can convert the EV's high voltage DC power supply into the low voltage DC power supply. In order to design an excellent convertor one must be guided by theory of automatic control. The principle and the method of design, modeling and control for DC DC convertors of EV are introduced. The method of the system response to a unit step function input and the frequency response method are applied to researching the convertor's mathematics model and control characteristic. Experiments show that the designed DC DC convertor's output voltage precision is high, the antijamming ability is strong and the adjustable performance is fast and smooth.
文摘This article gives an overview of the main passive solutions and active techniques, based on AC switches to limit inrush currents in medium power AC-DC converters (up to 3.7 kW) for electric vehicle charging systems. In particular, a strategy, based on SCR (silicon controlled rectifier) phase, shift control in a mixed rectifier bridge with diodes and thyristors, is proposed. The challenge is to help designers optimize the triggering delay of SCRs to both limit the peak value of inrush current spikes and optimize the charge duration of the DC-link capacitor. A mathematical model (Mathcad engineering tool) has been defined to point out, the interest of a variable triggering delay to control SCRs to meet the expectations described previously. Experimental measurements using an industrial evaluation board of the AC-DC converter demonstrate the robustness of the method.