In this work,we report the synthesis of ZnO ultrafine-rods with aspect ratio of about10via hydrothermal method.The as-prepared rod-like ZnO are characterized by X-ray diffraction(XRD),scanning electron mi-croscopy(SEM...In this work,we report the synthesis of ZnO ultrafine-rods with aspect ratio of about10via hydrothermal method.The as-prepared rod-like ZnO are characterized by X-ray diffraction(XRD),scanning electron mi-croscopy(SEM),transmission electron microscopy(TEM),and selected area electron diffraction(SAED).And the electrochemical performance of the ZnO material for Li-ion insertion and extraction is also investigated.It is found that the initial discharge capacity of1277mAh · g -1 and the high reversible capacity of766mAh · g -1 with low Li-ion insertion potential are obtained although the cyclic stability is relatively poor.The ZnO electrode after charging is characterized by X-ray diffraction,and only metallic Zn peaks with rod-like morphology are detected.The CV measurements prove the serial formation of Li-Zn alloys during discharging and charging process.展开更多
Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and elect...Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g^(–1)) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g^(–1) has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge.展开更多
文摘In this work,we report the synthesis of ZnO ultrafine-rods with aspect ratio of about10via hydrothermal method.The as-prepared rod-like ZnO are characterized by X-ray diffraction(XRD),scanning electron mi-croscopy(SEM),transmission electron microscopy(TEM),and selected area electron diffraction(SAED).And the electrochemical performance of the ZnO material for Li-ion insertion and extraction is also investigated.It is found that the initial discharge capacity of1277mAh · g -1 and the high reversible capacity of766mAh · g -1 with low Li-ion insertion potential are obtained although the cyclic stability is relatively poor.The ZnO electrode after charging is characterized by X-ray diffraction,and only metallic Zn peaks with rod-like morphology are detected.The CV measurements prove the serial formation of Li-Zn alloys during discharging and charging process.
基金supported by the Chinese Scholarship Council (CSC), Opening Fund of State Key Laboratory of Nonlinear Mechanicsthe “A Green Deal in Energy Materials” (ADEM) grant funded by Dutch Ministry of Economic Affairs and ADEM industrial partners
文摘Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g^(–1)) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g^(–1) has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge.