Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large...Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.展开更多
To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier e...To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier extractive experiments to check the chemical species of heavy metals. Experiment results show that the content of Cu, Zn, Pb and Cd ascend when particle size is smaller. Cu, Zn, Pb and Cd obviously enrich in particulate fly ash. The chemical species of heavy metal distribution ranking sequence generally is residual〉organic combinative〉Fe-Mn oxide combinative〉carbonate combinative〉ion-exchangeable. Lead's amiable-move species were high in proportion, amounted to 35%. Total content of Cadmium is at low level, but its ion-exchangeable species is relatively high in proportion. Nickel and zinc is mainly distributed in residue. Cu is mainly distributed in residue and organic combinative form. The content of manganese is relatively high in fly ash, and the carbonate combinative iron-manganese oxide combinative species are main chemical form. Cr is mainly distributed in residue, and its other chemical species are at low level. Compared with the soil background value of study area and Shandong Province, the content of Cu, Ni, Zn, Mn and Cr in fly ash of gangue power plant is lower. While contents of Pb and Cd were higher than background value, and amiable-move species is relatively high in proportion. They are more apt to cause heavy metal pollution.展开更多
Cocatalyst plays key roles in photogenerated charge separation and surface catalytic reactions in photocatalysis.However,it is not clear if the chemical states of cocatalysts changed or remains unchanged under photoca...Cocatalyst plays key roles in photogenerated charge separation and surface catalytic reactions in photocatalysis.However,it is not clear if the chemical states of cocatalysts changed or remains unchanged under photocatalytic reaction conditions.Herein,taking NaTaO3 as an example,we systemically investigated the chemical states of nickel‐based cocatalysts during photocatalytic water splitting reaction.It was found that photo‐induced self‐formation of Ni and NiO cocatalyst species take place on the surface of NaTaO3 nanocrystals.The self‐formation of dual‐cocatalysts not only occurs on 26‐facet NaTaO3,but also takes place on a more general 6‐facet NaTaO3.Our work clarified that the chemical states of cocatalysts are changing and the redox dual‐cocatalysts are redistributed on the semiconductor surface owing to the reaction induced by photogenerated charges under the condition of photocatalytic reactions.展开更多
A novel pseudo rubrene analogue,6,11-di(thiophen-2-yl)-tetracene-5,12-dione (DTTDO) was synthesized,in which two thienyl groups and two carbonyl groups replacing four phenyl groups in the rubrene molecule were connect...A novel pseudo rubrene analogue,6,11-di(thiophen-2-yl)-tetracene-5,12-dione (DTTDO) was synthesized,in which two thienyl groups and two carbonyl groups replacing four phenyl groups in the rubrene molecule were connected to the backbone of tetracene.This compound was characterized by single crystal X-ray structure analysis,thermogravimetric analysis,absorption spectra and electrochemical measurements.Unlike rubrene,DTTDO exhibited excellent film forming ability by normal vacuum deposition,indicating its promising applications in organic thin film transistors.展开更多
基金Project(2016YFB1100101)supported by the National Key Research and Development Program of China。
文摘Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.
文摘To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier extractive experiments to check the chemical species of heavy metals. Experiment results show that the content of Cu, Zn, Pb and Cd ascend when particle size is smaller. Cu, Zn, Pb and Cd obviously enrich in particulate fly ash. The chemical species of heavy metal distribution ranking sequence generally is residual〉organic combinative〉Fe-Mn oxide combinative〉carbonate combinative〉ion-exchangeable. Lead's amiable-move species were high in proportion, amounted to 35%. Total content of Cadmium is at low level, but its ion-exchangeable species is relatively high in proportion. Nickel and zinc is mainly distributed in residue. Cu is mainly distributed in residue and organic combinative form. The content of manganese is relatively high in fly ash, and the carbonate combinative iron-manganese oxide combinative species are main chemical form. Cr is mainly distributed in residue, and its other chemical species are at low level. Compared with the soil background value of study area and Shandong Province, the content of Cu, Ni, Zn, Mn and Cr in fly ash of gangue power plant is lower. While contents of Pb and Cd were higher than background value, and amiable-move species is relatively high in proportion. They are more apt to cause heavy metal pollution.
文摘Cocatalyst plays key roles in photogenerated charge separation and surface catalytic reactions in photocatalysis.However,it is not clear if the chemical states of cocatalysts changed or remains unchanged under photocatalytic reaction conditions.Herein,taking NaTaO3 as an example,we systemically investigated the chemical states of nickel‐based cocatalysts during photocatalytic water splitting reaction.It was found that photo‐induced self‐formation of Ni and NiO cocatalyst species take place on the surface of NaTaO3 nanocrystals.The self‐formation of dual‐cocatalysts not only occurs on 26‐facet NaTaO3,but also takes place on a more general 6‐facet NaTaO3.Our work clarified that the chemical states of cocatalysts are changing and the redox dual‐cocatalysts are redistributed on the semiconductor surface owing to the reaction induced by photogenerated charges under the condition of photocatalytic reactions.
基金support of the National Natural Science Foundation of China (60771031,60736004,20571079,20721061 and 50725311)National Basic Research Program of China (973 Program,2006CB806200 & 2006CB932100)Chinese Academy of Sciences
文摘A novel pseudo rubrene analogue,6,11-di(thiophen-2-yl)-tetracene-5,12-dione (DTTDO) was synthesized,in which two thienyl groups and two carbonyl groups replacing four phenyl groups in the rubrene molecule were connected to the backbone of tetracene.This compound was characterized by single crystal X-ray structure analysis,thermogravimetric analysis,absorption spectra and electrochemical measurements.Unlike rubrene,DTTDO exhibited excellent film forming ability by normal vacuum deposition,indicating its promising applications in organic thin film transistors.