The calcium phosphate coatings were prepared by virtue of electrochemical deposition in order to improve the corrosion resistance of Mg-1.0Ca alloys in simulated body fluids.The chemical compositions,structures and mo...The calcium phosphate coatings were prepared by virtue of electrochemical deposition in order to improve the corrosion resistance of Mg-1.0Ca alloys in simulated body fluids.The chemical compositions,structures and morphologies of the coatings were investigated by energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and scanning electron microscopy(SEM), respectively.The potentiodynamic electrochemical technique was employed to investigate the bio-degradation behavior of Mg-1.0Ca alloys with Ca-P coatings in Hank's solutions.The experimental results show that the deposited coatings predominately consist of flake-shape brushite(DCPD,CaHPO4·2H2O)crystallites.The corrosion resistance of the substrates with coatings is improved in Hank's solutions significantly.展开更多
基金Projects(CSTC2009AB4008)supported by Key Technologies R&D Program and Natural Science Foundation of Chongqing Science and Technology Commission,ChinaProject(KJ100808,KJ08065)supported by Science and Technology Research Fund of Chongqing Municipal Education Commission,China
文摘The calcium phosphate coatings were prepared by virtue of electrochemical deposition in order to improve the corrosion resistance of Mg-1.0Ca alloys in simulated body fluids.The chemical compositions,structures and morphologies of the coatings were investigated by energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and scanning electron microscopy(SEM), respectively.The potentiodynamic electrochemical technique was employed to investigate the bio-degradation behavior of Mg-1.0Ca alloys with Ca-P coatings in Hank's solutions.The experimental results show that the deposited coatings predominately consist of flake-shape brushite(DCPD,CaHPO4·2H2O)crystallites.The corrosion resistance of the substrates with coatings is improved in Hank's solutions significantly.