期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
分级三维结构高活性自支撑NiO_(x)H_(y)电化学析氧催化电极制备研究 被引量:2
1
作者 李静 蔡卫卫 《聊城大学学报(自然科学版)》 2023年第2期11-16,共6页
氢能技术是当前最具前景的洁净能源技术之一,而电解水制氢作为其中的关键一环,其阴阳极的两个半反应对贵金属的过分依赖极大地限制了电解水技术的商业化应用。为寻求低成本、耐用和高效的替代材料,以泡沫镍为镍源,使用苯甲醇作为有机溶... 氢能技术是当前最具前景的洁净能源技术之一,而电解水制氢作为其中的关键一环,其阴阳极的两个半反应对贵金属的过分依赖极大地限制了电解水技术的商业化应用。为寻求低成本、耐用和高效的替代材料,以泡沫镍为镍源,使用苯甲醇作为有机溶剂,在水热条件下实现泡沫镍表面的有机无机界面反应,生长得到了分级三维结构NiO_(x)H_(y)。这种分级三维结构可以增加自支撑催化电极的电化学析氧反应(OER)活性。同时,由于NiO_(x)H_(y)是原位生长在泡沫镍基底上,催化剂表现出卓越的稳定性。通过一系列的电化学测试可知,得到的NiO_(x)H_(y)是一种高活性、高稳定性的碱性OER催化剂,具备在商业电解池中使用的潜力。 展开更多
关键词 电化学析氧反应 自支撑催化电极 NiO_(x)H_(y) 分级三维结构
下载PDF
Synergistic effect of heterogeneous single atoms and clusters for improved catalytic performance
2
作者 Long Liu Wenting Gao +5 位作者 Yiling Ma Kainan Mei Wenlong Wu Hongliang Li Zhirong Zhang Jie Zeng 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期34-40,I0010,共8页
Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer... Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV. 展开更多
关键词 single-atom cluster catalysts synergistic effect oxygen evolution reaction
下载PDF
Effects of phosphate precursors on morphology and oxygen evolution reaction activity of NiFe(oxy)hydroxide on nickel foams 被引量:2
3
作者 Ran DUAN Ye-jun LI +4 位作者 Shu WANG Yong-gang TONG Horst-Günter RUBAHN Gu-fei ZHANG Wei-hong QI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期4050-4061,共12页
NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse... NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test. 展开更多
关键词 NiFe(oxy)hydroxides Fe-based phosphate oxygen evolution reaction electrochemical activation
下载PDF
In situ evolution of surface Co_(2)CrO_(4) to CoOOH/CrOOH by electrochemical method:Toward boosting electrocatalytic water oxidation
4
作者 Jinxiu Zhao Xiang Ren +4 位作者 Xu Sun Yong Zhang Qin Wei Xuejing Liu Dan Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1096-1101,共6页
Developing non‐noble‐metal electrocatalyst with efficient and durable activity is a urgent task for addressing the sluggish reaction kinetics of electrochemical water oxidation.Structural evolution of the electrocat... Developing non‐noble‐metal electrocatalyst with efficient and durable activity is a urgent task for addressing the sluggish reaction kinetics of electrochemical water oxidation.Structural evolution of the electrocatalyst is an important strategy for achieving enhanced performance.Herein,in situ evolution of surface Co_(2)CrO_(4) to CoOOH/CrOOH(CoOOH/CrOOH‐Co_(2)CrO_(4))by an electrochemical method under alkaline conditions was designed for enhancing the electrocatalytic performance of water oxidation.The experiments demonstrated that the synergy between CoOOH/CrOOH and Co_(2)CrO_(4) resulted in a marked increase in the number of active sites and improved the rate of charge transfer,which enhanced the activity for water oxidation.At a geometrical current density of 20 mA cm^(−2),the overpotential of the oxygen evolution reaction was 244 mV and the turnover frequency was 0.536 s^(−1) in 1.0 M NaOH. 展开更多
关键词 CoOOH/CrOOH‐Co_(2)CrO_(4)nanosheet Anodizing evolution Electrochemical catalysis Oxygen evolution reaction Turnover frequency
下载PDF
Synergistic effect of atomic layer deposition-assisted cocatalyst and crystal facet engineering in SnS2 nanosheet for solar water oxidation 被引量:3
5
作者 Linxing Meng Cheng Cheng +4 位作者 Run Long Weiwei Xu Shengnan Li Wei Tian Liang Li 《Science Bulletin》 SCIE EI CAS CSCD 2022年第15期1562-1571,M0004,共11页
The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet... The severe bulk recombination and sluggish oxygen evolution reaction(OER)dynamics of photoanodes severely restrict the application of photoelectrochemical(PEC)devices.To solve these two problems,crystallographic facet orientation and cocatalyst emergence with a high-quality photoanode/cocatalyst interface were realized through an air annealing-assisted strategy to treat atomic layer deposition(ALD)-modified SnSnanosheet arrays.Based on experimental observations and theoretical calculations,the reduced(001)crystal facet of SnSdecreases the recombination of photogenerated carriers in the bulk and improves the carrier separation of the photoanode.Moreover,the unexpectedly formed ZnTiOSfilm decreases the overpotential of the surface OER,reduces interface recombination,and extends the carrier lifetime.These synergistic effects lead to significantly enhanced PEC performance,with a high photocurrent density of 1.97 mA cm^(-2)at 1.23 V vs.reversible hydrogen electrode(RHE)and a low onset potential of 0.21 V vs.RHE,which are superior to reported mostly SnS-based photoanodes. 展开更多
关键词 SnS2 COCATALYST Interface control Crystal facet engineering Water oxidation
原文传递
The critical role of electrochemically activated adsorbates in neutral OER 被引量:3
6
作者 Longsheng Zhang Haiyang Yuan +9 位作者 Liping Wang Hui Zhang Yijing Zang Yao Tian Yunzhou Wen Fenglou Ni Hao Song Haifeng Wang Bo Zhang Huisheng Peng 《Science China Materials》 SCIE EI CSCD 2020年第12期2509-2516,共8页
Developing efficient electrocatalysts for the oxygen evolution reaction(OER)under neutral conditions is important for microbial electrolysis cells(MECs).However,the OER kinetics in neutral electrolytes at present are ... Developing efficient electrocatalysts for the oxygen evolution reaction(OER)under neutral conditions is important for microbial electrolysis cells(MECs).However,the OER kinetics in neutral electrolytes at present are extremely sluggish,resulting in high overpotentials that greatly limit the energy conversion efficiencies of MECs.Previous studies failed to probe the adsorbates on surface metal sites of catalysts at the atomic scale and elucidate their influence on the catalytic activities,which has impeded the rational design of efficient neutral OER catalysts with optimal surface structures.Here,using in situ transmission electron microscopy(TEM),in situ X-ray photoelectron spectroscopy(XPS)and in situ low-energy ion scattering studies,we have identified,for the first time,that the electrochemically activated adsorbates on surface metal sites play a critical role in boosting the neutral OER activities of Ru-Ir binary oxide(RuxIryO2)catalysts.The adsorbate-activated RuxIryO2on a glassy carbon electrode achieved a low overpotential of 324 m V at10 m A cm-2in neutral electrolyte,with a 36-fold improvement in turnover frequency compared with that of Ir O2benchmark.Upon application in an MEC system,the resulting full cell showed a decreased voltage of 1.8 V,200 m V lower than the best value reported to date,facilitating efficient synthesis of poly(3-hydroxybutyrate)from bioelectrochemical CO2reduction.Density functional theory(DFT)studies revealed that the enhanced OER activity of RuxIryO2catalyst arose from local structural distortion of adjacent adsorbate-covered Ru octahedra at the catalyst surface and the consequently decreased adsorption energies of OER intermediates on Ir active center. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction ADSORBATES neutral electrolytes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部