The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electro...The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.展开更多
Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucid...Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucidated the effect of the molecular structures of organic redox species on the performance of relative supercapacitors,which is important in the development of redox additives for super-capacitors.In this context,we synthesized several viologens and used them as new organic redox additives for super-capacitors with organic electrolytes.The detailed experimental analysis and theoretical calculation results show that the electrochemical performance of viologens relies heavily on their side chains and conjugated cores.Specifically,the side chains of the viologens affect their electronic structures and are consistent with behaviours between the molecules and the electrode pores due to the size effect,thus influencing their specific capacities.In addition,a larger conjugated aromatic core endows viologens with a smaller band gap and a higher degree of electron delocalization,resulting in better rate performance and cycling stability.Consequently,aπ-conjugated viologen derivative is selected as a favourable additive and enables an EDLC-type supercapacitor to exhibit a high energy density(34.0 W h kg^−1 at 856 W kg^−1)and good cycling performance.展开更多
基金supported by the National Natural Science Foundation of China (21476145)~~
文摘The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.
基金funding support from the Ministry of Science and Technology of China(2012CB933403)Beijing Natural Science Foundation(2182086)the National Natural Science Foundation of China(51425302 and 51302045)。
文摘Introducing redox species into the electrolytes of traditional electric double layer capacitors(EDLCs)is an efficient strategy to enhance their energy density owing to Faradic reactions.However,few studies have elucidated the effect of the molecular structures of organic redox species on the performance of relative supercapacitors,which is important in the development of redox additives for super-capacitors.In this context,we synthesized several viologens and used them as new organic redox additives for super-capacitors with organic electrolytes.The detailed experimental analysis and theoretical calculation results show that the electrochemical performance of viologens relies heavily on their side chains and conjugated cores.Specifically,the side chains of the viologens affect their electronic structures and are consistent with behaviours between the molecules and the electrode pores due to the size effect,thus influencing their specific capacities.In addition,a larger conjugated aromatic core endows viologens with a smaller band gap and a higher degree of electron delocalization,resulting in better rate performance and cycling stability.Consequently,aπ-conjugated viologen derivative is selected as a favourable additive and enables an EDLC-type supercapacitor to exhibit a high energy density(34.0 W h kg^−1 at 856 W kg^−1)and good cycling performance.