The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional ...The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The sub-stituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.展开更多
基金supported by the National Natural Science Foundation of China (20803059)Chongqing Municipal Natural Science Foundation(2009BB6002)
文摘The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The sub-stituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.