This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃sp...This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.展开更多
The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallogr...The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallographic microscopy and electrochemical measurements. The results show that both pitting corrosion from or around the intermetallic particles and intergranular corrosion are observed after the immersion test due to the inhomogeneous nature of the microstructure of the 7A09 alloy. The preferential dissolution of the anodic Cu-depleted zone along grain boundaries is believed to be the possible cause of intergranular corrosion. The passivation and depassivation of this alloy show significant dependence of immersion time, owing to the formation and dissolution of various passive films on the sample surfaces. Furthermore, the corrosion process and corrosion mechanism were also analyzed.展开更多
文摘This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.
基金Project(JSJC2013209B057)supported by the National Defense Technology Foundation of China
文摘The corrosion and electrochemical behaviors of 7A09 Al?Zn?Mg?Cu alloy were investigated in 3.5% NaCl (mass fraction) solution using complementary techniques such as scanning electron microscopy (SEM), metallographic microscopy and electrochemical measurements. The results show that both pitting corrosion from or around the intermetallic particles and intergranular corrosion are observed after the immersion test due to the inhomogeneous nature of the microstructure of the 7A09 alloy. The preferential dissolution of the anodic Cu-depleted zone along grain boundaries is believed to be the possible cause of intergranular corrosion. The passivation and depassivation of this alloy show significant dependence of immersion time, owing to the formation and dissolution of various passive films on the sample surfaces. Furthermore, the corrosion process and corrosion mechanism were also analyzed.