In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the p...In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.展开更多
The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry cur...The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper.展开更多
The electroless deposition process of copper plating consisting of TEA and EDTA as complexing agents,paraformaldehyde as reducing agent,and 2-mercaptobenzothiozole as stabilizer and gelatin and animal glue as additive...The electroless deposition process of copper plating consisting of TEA and EDTA as complexing agents,paraformaldehyde as reducing agent,and 2-mercaptobenzothiozole as stabilizer and gelatin and animal glue as additives was investigated.The stability of the electroless copper solution was monitored by measuring the absorbance of the solution with a UV-Visible spectrophotometer and the solution was quite stable up to 15 h.The adhesion of copper films on mild steel foil was assessed by standard bend test and exhibited good adhesion.The XRD results indicate that the copper films have a(111) texture.Moreover,the additives suppress the predominant(111) plane crystal growth and increase the rate of(220) texture crystal growth.The crystal size of the copper films was calculated using the Scherrer formula from the predominant peak.SEM and AFM studies reveal that these two additives modify the crystal structure,grain size and surface morphology of the copper films.The cyclic voltammetry studies reveal that the additives are adsorbed on the electrode surface and inhibit the rate of deposition.Potentiodynamic polarization and electrochemical impedance studies reveal that the deposits produced in the presence of additives display higher corrosion resistance.展开更多
The use of more and more electron products requires interior wood products to have the performance of electromagnetic shielding. One of the ways to realize it is to introduce the chemical plating which has already bee...The use of more and more electron products requires interior wood products to have the performance of electromagnetic shielding. One of the ways to realize it is to introduce the chemical plating which has already been developed in electron industry into wood processing. The paper clarifies the mechanism of electroless copper and gold plating and its application to wood. It emphasizes the development and technology of electroless copper and gold plating on wood. Meanwhile, it points out that it is highly feasible to take this technology into effect.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301105)the National Natural Science Foundation of China(No.51804190)+4 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2021ME240)the Youth Science Funds of Shandong Academy of Sciences,China(No.2020QN0022)the Shandong Province Key Research and Development Plan,China(Nos.2019GHZ019 and 2019JZZY020329)the Jinan Science&Technology Bureau,China(No.2019GXRC030)the Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)。
文摘In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.
基金Project(200501045) supported by Innovation Fund of Guangdong Province of China
文摘The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper.
文摘The electroless deposition process of copper plating consisting of TEA and EDTA as complexing agents,paraformaldehyde as reducing agent,and 2-mercaptobenzothiozole as stabilizer and gelatin and animal glue as additives was investigated.The stability of the electroless copper solution was monitored by measuring the absorbance of the solution with a UV-Visible spectrophotometer and the solution was quite stable up to 15 h.The adhesion of copper films on mild steel foil was assessed by standard bend test and exhibited good adhesion.The XRD results indicate that the copper films have a(111) texture.Moreover,the additives suppress the predominant(111) plane crystal growth and increase the rate of(220) texture crystal growth.The crystal size of the copper films was calculated using the Scherrer formula from the predominant peak.SEM and AFM studies reveal that these two additives modify the crystal structure,grain size and surface morphology of the copper films.The cyclic voltammetry studies reveal that the additives are adsorbed on the electrode surface and inhibit the rate of deposition.Potentiodynamic polarization and electrochemical impedance studies reveal that the deposits produced in the presence of additives display higher corrosion resistance.
文摘The use of more and more electron products requires interior wood products to have the performance of electromagnetic shielding. One of the ways to realize it is to introduce the chemical plating which has already been developed in electron industry into wood processing. The paper clarifies the mechanism of electroless copper and gold plating and its application to wood. It emphasizes the development and technology of electroless copper and gold plating on wood. Meanwhile, it points out that it is highly feasible to take this technology into effect.