深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved dee...深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。展开更多
火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排...火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排放量变得至关重要。在燃煤电厂碳计量中,烟气流量影响燃煤发电中在线监测法的精度,而燃煤消耗量、燃煤元素碳含量以及飞灰碳含量共同决定核算法的可靠性。目前,大多数燃煤发电企业只对流量和燃煤消耗量进行实时监测,在现场恶劣的环境中对燃煤元素碳含量以及飞灰碳含量进行短周期、高频次的直接监测需要花费较大的人力以及物力,流量监测设备也易受烟道环境影响。而软测量技术以其高效和低成本的特点,可为传统碳排放计量过程中关键参数的监测提供一种替代方法。鉴于此,首先阐述了软测量模型的建立过程,包含数据预处理、辅助变量选择、软测量模型建立以及模型校正。数据预处理能够确保数据质量,提高建模效率;辅助变量选择是从大量潜在的变量中筛选出对目标变量的辅助变量,进一步提高建模效率;软测量模型建立主要是基于机理建模和数据驱动建模,是实现目标变量预测的核心;模型校正通过实际的离线或在线数据,对模型进行进一步优化,提高模型的预测精度。其次,针对碳计量相关参数,分析了烟气流量、燃煤消耗量、燃煤元素碳含量和飞灰碳含量监测存在的问题,论述了软测量技术在上述碳计量关键参数的国内外研究进展和应用,评估了机理建模和数据驱动建模技术的有效性、准确性和实用性。其中,机理分析建模主要基于电厂锅炉进出口的能量平衡以及烟风质量守恒等原理,有着确定的数学物理关系式,具有高度可解释性和稳定性,但是建模过程复杂,预测精度较低;数据驱动建模主要是利用各种机器学习方法,基于电厂分布式控制系统(Distributed control system,DCS)丰富的运行数据,对碳计量关键参数进行“黑箱建模”,克服了机理分析建模复杂的过程分析,精度相对较高,但是建模过程不明确,且模型对于不同机组的泛化能力较差。最后,对于软测量技术在碳排放计量领域的发展应用进行了总结与展望。对电厂各参数之间的时序结构、电厂自身计算能力的限制以及机理分析融合数据驱动方法的发展提出相关建议,并对国外二氧化碳预测性排放系统结合软测量技术在国内外燃煤电厂的应用进行展望。展开更多
促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现...促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。展开更多
文摘深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。
文摘火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排放量变得至关重要。在燃煤电厂碳计量中,烟气流量影响燃煤发电中在线监测法的精度,而燃煤消耗量、燃煤元素碳含量以及飞灰碳含量共同决定核算法的可靠性。目前,大多数燃煤发电企业只对流量和燃煤消耗量进行实时监测,在现场恶劣的环境中对燃煤元素碳含量以及飞灰碳含量进行短周期、高频次的直接监测需要花费较大的人力以及物力,流量监测设备也易受烟道环境影响。而软测量技术以其高效和低成本的特点,可为传统碳排放计量过程中关键参数的监测提供一种替代方法。鉴于此,首先阐述了软测量模型的建立过程,包含数据预处理、辅助变量选择、软测量模型建立以及模型校正。数据预处理能够确保数据质量,提高建模效率;辅助变量选择是从大量潜在的变量中筛选出对目标变量的辅助变量,进一步提高建模效率;软测量模型建立主要是基于机理建模和数据驱动建模,是实现目标变量预测的核心;模型校正通过实际的离线或在线数据,对模型进行进一步优化,提高模型的预测精度。其次,针对碳计量相关参数,分析了烟气流量、燃煤消耗量、燃煤元素碳含量和飞灰碳含量监测存在的问题,论述了软测量技术在上述碳计量关键参数的国内外研究进展和应用,评估了机理建模和数据驱动建模技术的有效性、准确性和实用性。其中,机理分析建模主要基于电厂锅炉进出口的能量平衡以及烟风质量守恒等原理,有着确定的数学物理关系式,具有高度可解释性和稳定性,但是建模过程复杂,预测精度较低;数据驱动建模主要是利用各种机器学习方法,基于电厂分布式控制系统(Distributed control system,DCS)丰富的运行数据,对碳计量关键参数进行“黑箱建模”,克服了机理分析建模复杂的过程分析,精度相对较高,但是建模过程不明确,且模型对于不同机组的泛化能力较差。最后,对于软测量技术在碳排放计量领域的发展应用进行了总结与展望。对电厂各参数之间的时序结构、电厂自身计算能力的限制以及机理分析融合数据驱动方法的发展提出相关建议,并对国外二氧化碳预测性排放系统结合软测量技术在国内外燃煤电厂的应用进行展望。
文摘促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。