This paper introduces the system structure and work principle of the upgraded real time information system in Wangting Power Plant, and then expounds the realization way and function features of this system on B/S co...This paper introduces the system structure and work principle of the upgraded real time information system in Wangting Power Plant, and then expounds the realization way and function features of this system on B/S computing mode. The results of field application show the new system has good capability, reliability and expandability.展开更多
In contrast to a traditional coal-fired power generation plant where steam extracted from a turbine is used to preheat the feedwater in all preheating stages, a solar-aided power generation(SAPG) plant uses solar heat...In contrast to a traditional coal-fired power generation plant where steam extracted from a turbine is used to preheat the feedwater in all preheating stages, a solar-aided power generation(SAPG) plant uses solar heat to replace a part or all of the extracted steam in one or more preheating stages. The performance of an SAPG plant with different replacements is investigated in this study by using specific consumption theory(SCT). Fuel-specific and cost-specific consumption models for SAPG plants are built based on the SCT. A typical 330 MW coal-fired power plant is used as the study case. The performance of the SAPG plant in terms of specific consumption, with steam obtained from the first through the eighth(except for the fourth) stages of extraction replaced by solar heat, is compared with that of the reference coal-fired power plant. The fuel-specific consumption of the SAPG plant is determined to be lower than that of the reference coal-fired power plant. The fuel-specific consumption accrual distribution in SAPG plants is used to assess the effect of each individual replacement. Effective strategies to reduce the specific costs of the SAPG and coal-fired power plants are proposed based on the results of this study.展开更多
A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of ...A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of beat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.展开更多
文摘This paper introduces the system structure and work principle of the upgraded real time information system in Wangting Power Plant, and then expounds the realization way and function features of this system on B/S computing mode. The results of field application show the new system has good capability, reliability and expandability.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2015CB251505)the National Natural Science Foundation of China(Grant No.51206049)+2 种基金the National Hi-Tech Research and Development Program of China("863"Project)(2012AA050604)the 111 Project(Grant No.B12034)the Fundamental Research Funds for the Central Universities(Grant No.2014XS29)
文摘In contrast to a traditional coal-fired power generation plant where steam extracted from a turbine is used to preheat the feedwater in all preheating stages, a solar-aided power generation(SAPG) plant uses solar heat to replace a part or all of the extracted steam in one or more preheating stages. The performance of an SAPG plant with different replacements is investigated in this study by using specific consumption theory(SCT). Fuel-specific and cost-specific consumption models for SAPG plants are built based on the SCT. A typical 330 MW coal-fired power plant is used as the study case. The performance of the SAPG plant in terms of specific consumption, with steam obtained from the first through the eighth(except for the fourth) stages of extraction replaced by solar heat, is compared with that of the reference coal-fired power plant. The fuel-specific consumption of the SAPG plant is determined to be lower than that of the reference coal-fired power plant. The fuel-specific consumption accrual distribution in SAPG plants is used to assess the effect of each individual replacement. Effective strategies to reduce the specific costs of the SAPG and coal-fired power plants are proposed based on the results of this study.
文摘A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of beat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.