In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o...In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.展开更多
In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach h...In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.展开更多
In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equaliz...In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equalization. Based on the bi-directional modified Cuk converter, variable universe fuzzy controllers are proposed to adaptively maintain equalizing currents between cells of a serially connected battery pack in varying conditions. The inputs to the fuzzy controller are the voltage differences and the average voltages of adjacent cell pairs. A large voltage difference requires large equalizing current while adjacent cells both with low/high voltages can only stand small discharge/charge currents. Compared with the conventional fuzzy control method, the proposed method differs in that the universe can shrink or expand as the effects of the input changes. This is important as the input may change in a small range. Simulation results demonstrate that the proposed variable universe fuzzy control method has fast equalization speed and good adaptiveness for varying conditions.展开更多
基金Project(50905015) supported by the National Natural Science Foundation of China
文摘In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.
文摘In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.
基金supported by the National Natural Science Foundation of China under Grant Nos.61433013 and 61621002
文摘In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equalization. Based on the bi-directional modified Cuk converter, variable universe fuzzy controllers are proposed to adaptively maintain equalizing currents between cells of a serially connected battery pack in varying conditions. The inputs to the fuzzy controller are the voltage differences and the average voltages of adjacent cell pairs. A large voltage difference requires large equalizing current while adjacent cells both with low/high voltages can only stand small discharge/charge currents. Compared with the conventional fuzzy control method, the proposed method differs in that the universe can shrink or expand as the effects of the input changes. This is important as the input may change in a small range. Simulation results demonstrate that the proposed variable universe fuzzy control method has fast equalization speed and good adaptiveness for varying conditions.