This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by ...This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.展开更多
文摘This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.