A novel MOS-only voltage reference is presented,which is based on the threshold voltage difference between p-type and n-type MOSFETs. Its precision is improved by the cancellation of the process variation. The referen...A novel MOS-only voltage reference is presented,which is based on the threshold voltage difference between p-type and n-type MOSFETs. Its precision is improved by the cancellation of the process variation. The reference has been successfully implemented in a Chartered 0.35μm CMOS process. The occupied chip area is 0. 022mm^2. Measurements indicate that without trimming, the average output voltage error is 6mV at room temperature compared with the simulation result. The temperature coefficient is 180ppm/℃ in the worst case in the temperature range of 0 to 100℃ ,and the line regulation is ± 1.1%. The reference is applied in an adaptive power MOSFET driver.展开更多
An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, ...An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, etc., when high power supply voltage is needed. Accordingly,a new bandgap reference with a wide supply voltage range is proposed. Due to the improved structure,it features a high power supply rejection ratio (PSRR) and high temperature stability. In addition, an auxiliary micro-power reference is introduced to support the sleep mode of the PM chip and reduce its standby power consumption. The auxiliary reference provides bias currents in normal mode and a 1.28V reference voltage in sleep mode to replace the main reference and save power. Simulation results show that the reference provides a reference volt- age of 1.27V,which has a 3.5mV drift over the temperature range from -20 to 120~C and 56t^V deviation over a supply voltage range from 3 to 40V. The PSRR is higher than 100dB for frequency below 10kHz. The circuit was completed in 1.5tzm BCD (Bipolar-CMOS-DMOS) technology. The experimental results show that all main expectations are achieved.展开更多
文摘A novel MOS-only voltage reference is presented,which is based on the threshold voltage difference between p-type and n-type MOSFETs. Its precision is improved by the cancellation of the process variation. The reference has been successfully implemented in a Chartered 0.35μm CMOS process. The occupied chip area is 0. 022mm^2. Measurements indicate that without trimming, the average output voltage error is 6mV at room temperature compared with the simulation result. The temperature coefficient is 180ppm/℃ in the worst case in the temperature range of 0 to 100℃ ,and the line regulation is ± 1.1%. The reference is applied in an adaptive power MOSFET driver.
文摘An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, etc., when high power supply voltage is needed. Accordingly,a new bandgap reference with a wide supply voltage range is proposed. Due to the improved structure,it features a high power supply rejection ratio (PSRR) and high temperature stability. In addition, an auxiliary micro-power reference is introduced to support the sleep mode of the PM chip and reduce its standby power consumption. The auxiliary reference provides bias currents in normal mode and a 1.28V reference voltage in sleep mode to replace the main reference and save power. Simulation results show that the reference provides a reference volt- age of 1.27V,which has a 3.5mV drift over the temperature range from -20 to 120~C and 56t^V deviation over a supply voltage range from 3 to 40V. The PSRR is higher than 100dB for frequency below 10kHz. The circuit was completed in 1.5tzm BCD (Bipolar-CMOS-DMOS) technology. The experimental results show that all main expectations are achieved.