Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the...Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.展开更多
To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed...To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed for the compensation of the secondary filter.The introduction of a high-frequency feedback path,in addition to the traditional feedback path,effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance.A small-signal model of the buck converter based on the proposed control method was derived,and the stability and selection of control parameters were analyzed.AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage.The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50%and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.展开更多
文摘Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.
文摘To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed for the compensation of the secondary filter.The introduction of a high-frequency feedback path,in addition to the traditional feedback path,effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance.A small-signal model of the buck converter based on the proposed control method was derived,and the stability and selection of control parameters were analyzed.AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage.The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50%and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.