The photo-physical characteristics of semiconductor polymer are systematically stud- ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co- benzothiadiazole) (F8BT). The quant...The photo-physical characteristics of semiconductor polymer are systematically stud- ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co- benzothiadiazole) (F8BT). The quantum chemical calculation shows that the introduction of benzothiadiazole unit facilitates the intrachain charge transfer (ICT) and modulates the electronic transition mechanism of polymer. The transient absorption measurement exhibits that intrachain exciton relaxation is dominant in the decay of excited PFO in a monodis- perse system and intrachain exciton interaction could appear at high excitation intensity. In F8BT solution, the ICT state exists and participates in the relaxation of excited state. The relaxation processes of PFO and F8BT in the condensed phase both accelerate and show obvious exciton-exciton annihilation behavior at high excitation intensity. At the same excitation intensity, the mean lifetime of F8BT is longer than that of PFO, which may be assigned to the excellent delocalization of charge.展开更多
The excited state photophysics of low bandgap polymer APFO3 has been investigated in detail. The chemical calculations confirm that the intrachain charge transfer (ICT) may occur after photo-excitation and is mainly...The excited state photophysics of low bandgap polymer APFO3 has been investigated in detail. The chemical calculations confirm that the intrachain charge transfer (ICT) may occur after photo-excitation and is mainly responsible for the first absorption band. The transient absorption results confirm that ICT indeed exists and competes with the vibra-tional relaxation at the same time, when APFO3 is in a monodisperse system. This ICT process would disappear due to the influence of interchain interaction when APFO3 is in the condensed phase, where the exciton decay would be dominant in the relaxation process after photoexcitation. The photoexcitation dynamics of APFO3 film blending with PC61BM are presented, which shows that the exciton may be dissociated completely as the percentage of PC61BM reaches ~50%. Meanwhile, the photovoltaic performance based on blend het-erojunction shows that the increase of photocurrent is little if the percentage of PC61BM exceeds ~50%. Overall, the present study has covered several fundamental processes taking place in the APFO3 polymer.展开更多
In this paper,effects of conditions in phenol sulfonic acid(PSA) plating for tin coating of MR low carbon aluminum killed steel on trace Pb were examined.Trace Pb was measured by atomic absorption spectrometry(AAS)and...In this paper,effects of conditions in phenol sulfonic acid(PSA) plating for tin coating of MR low carbon aluminum killed steel on trace Pb were examined.Trace Pb was measured by atomic absorption spectrometry(AAS)and glow discharge spectrometry,and coating morphology was observed by scanning electronic microscopy(SEM).Corrosion resistance of the tin coating was analyzed by electrochemical methods.The results indicated that Pb content in the tin coating reduced as bath temperature increased.When the temperature exceeded40 ℃,the grains in the coating were coarse and loose,reducing the corrosion resistance.As current density increased,Pb content increased rapidly,while low current density plating could lead to drain regions.The plating speed had no obvious effect on trace Pb in tin coating.In the tin plating layer,Pb was enriched at the surface and gradually reduced to zero along the depth.At bath temperature of 40 ℃ and current density of 20 A·dm^(-2),the amount of Pb could be less than 100 mg·kg^(-1) with excellent corrosion resistance.展开更多
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal sta...On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.展开更多
An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary ...An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.展开更多
Cadmium (Cd) concentrations in the water extracts of ten contaminated soils by arsenic (As) with various iron (Fe) contents were measured using inductively coupled plasma atomic emission spectrometry (ICP-AES)...Cadmium (Cd) concentrations in the water extracts of ten contaminated soils by arsenic (As) with various iron (Fe) contents were measured using inductively coupled plasma atomic emission spectrometry (ICP-AES) and electrothermal atomic absorption spectrometry (ETAAS), Due to the potential spectral interferences of As and Fe in the quantification of Cd, two methods were used for the background compensation. The first method was based on the use of a deuterium lamp (BGCD2 mode). The second one required a Cd hollow cathode lamp pulsated with a current for which the intensity varies in the course of time (BGCSR mode). The results showed that the choices of the analytical technique and the method used for the background compensation depend on the Cd, As and Fe concentrations in the solution and the concentration ratios As/Cd or/and Fe/Cd. In comparison with the ICP-AES and the ETAAS in combination with the BGCD2 mode, it was shown that the high-speed self-reversal method (HSSR) was a more appropriate method to correct As and Fe spectral interferences during the Cd measurements. On the other hand, depending on the Cd concentration, it was established that no significant Fe interference occurred during the Cd determination even if Fe concentration was 50 mg/L, reflecting the efficiency of the HSSR method to overcome the Fe interferences in the determination of Cd concentration by ETAAS without any matrix modifier in water extracts.展开更多
Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmen...Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.展开更多
Aggregation behavior of C.I.Direct Blue 86 was discussed using analyses of its UV-Vis spectra.The experiment results show that the dye molecules are inclined to aggregate in aqueous solution.Even in a very dilute solu...Aggregation behavior of C.I.Direct Blue 86 was discussed using analyses of its UV-Vis spectra.The experiment results show that the dye molecules are inclined to aggregate in aqueous solution.Even in a very dilute solution of 0.050μmol/L,A618/A659 =1.2398,showing that the dye monomers still coexist with its dimers.The strong aggregation trend may cause dye precipitates at a higher concentration,which is an important factor that should be considered in producing a formula of ink-jet inks containing the dye as a colorant.展开更多
The geometries and electronic spectra of a series of N-protonated corroles, including unsub- stituted H4Cor+ and meso-triaryl substituted H4TPC+, H4TpFPC+, and H4TdCPC+, were theoretically studied with density fun...The geometries and electronic spectra of a series of N-protonated corroles, including unsub- stituted H4Cor+ and meso-triaryl substituted H4TPC+, H4TpFPC+, and H4TdCPC+, were theoretically studied with density functional theory (DFT). The results indicate that all these compounds have two conformers, one with C2 symmetry (denoted as Sl) is more stable than the other (denoted as $2, C1 symmetry) by 15.8-18.5 kJ/mol. The corrole macrocycles of these compounds show significant out-of-plane deformation. The enantiomerizations of the chiral S1 conformers were found to be a multi-step process with the $2 conformers as the intermediates. Electronic absorption spectra and electronic circular dichroism (ECD) of these compounds were calculated with time-dependent DFT. In comparison with H4Cor+, the UV- Vis absorptions of meso-triaryl species are significantly red-shifted and their Q bands are enhanced due to the π-π conjugation between the aryl and corrole rings. Several neighboring electronic transitions were calculated with opposite signs in rotatory strengths, suggesting that ECD spectroscopy may be a useful tool in studying the electronic transitions of these compounds.展开更多
Trace element analysis on hair samples has been widely used to assess wildlife and human exposure to different contaminants present in the environment or at the workplace. Pollutants due to the presence of toxic metal...Trace element analysis on hair samples has been widely used to assess wildlife and human exposure to different contaminants present in the environment or at the workplace. Pollutants due to the presence of toxic metals in environment not only enter the body by breading, water, and foodstuff accumulates in hair, but they could be adsorbed directly on the hair from environment. In order to remove adsorbed elements and thus determine the internally bound elements correctly, hair sample must be washed. In the present work, we propose uncertainty estimation for the analytical results that are obtained from determination of cadmium, lead, copper, iron, manganese and nickel in human hair by flame and electrothermal atomic absorption spectrometry (FAAS and ETAAS). To estimate the uncertainty of analytical result obtained, two types of bias are calculated in the assessment of trueness: a proportional bias and a constant bias. Nested design was applied for calculating proportional bias and Youden method to calculate the constant bias. The results we obtained for proportional bias are calculated from spiked samples. In this case, the concentration found is plotted against the concentration added and the slop of standard addition curve is an estimate of the method recovery. Estimated method of average recovery in human hair is: (1.019 ±0.026), (0.918 ±0.014), (1.073±0.016), (1.0597± 0.017), (1.073± 0.020) and (0.934± 0.117) for Cd, Pb, Mn, Ni, Fe and Cu respectively.展开更多
The significance of research of water system is demonstrated by the experiments and statistical data. Some physical and chemical properties of water system affected by various factors in the nature are given. It also ...The significance of research of water system is demonstrated by the experiments and statistical data. Some physical and chemical properties of water system affected by various factors in the nature are given. It also points out that further research of the effect on extremely complicated water system caused by electricity, magnetic field, sound and light now becomes an important research subject.展开更多
Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is d...Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is driven by thedc and ac electric fields. The slow variation in the intraband polarization depends on the ac electric field frequency. Theintraband polarization increases when the ac electric field frequency is below the Bloch frequency. When the ac electricfield frequency is above the Bloch frequency, the intraband polarization downwards and its intensity decreases. Thesatellite structures in the optical absorption spectra are presented. Due to excitonic dynamic localization, the emissionlines of terahertz shift in different ac electric field and dc electric field.展开更多
Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can ...Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-bylayber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex fihns is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.展开更多
The geometric and electronic structures of several possible adsorption configurations of the pyrazine(C4H4N2)molecule covalently attached to Si(100)surface,which is of vital importance in fabricating functional nano-d...The geometric and electronic structures of several possible adsorption configurations of the pyrazine(C4H4N2)molecule covalently attached to Si(100)surface,which is of vital importance in fabricating functional nano-devices,have been investigated using X-ray spectroscopies.The Carbon K-shell(1s)X-ray photoelectron spectroscopy(XPS)and near-edge X-ray absorption fine structure(NEXAFS)spectroscopy of predicted adsorbed structures have been simulated by density functional theory with cluster model calculations.Both XPS and NEXAFS spectra demonstrate the structural dependence on different adsorption configurations.In contrast to the XPS spectra,it is found that the NEXAFS spectra exhibiting conspicuous dependence on the structures of all the studied pyrazine/Si(100)systems can be well utilized for structural identification.In addition,according to the classification of carbon atoms,the spectral components of carbon atoms in different chemical environments have been investigated in the NEXAFS spectra as well.展开更多
Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, hum...Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, humic substances (HS) content, humic acids (HA) content, fulvic acids (FA), hot water extractable carbon (Chw) content and content total and labile trace elements content. Humic substances quality was assessed by HA/FA ratio and by coloured indexes measured in ultraviolet and visible UV-VIS spectral range. The total and labile contents of Zn, Cd, Cu, Co, Pb, Mo and Se were determined by flame or electro-thermal atomic absorption spectrometry after extraction of the soil samples in the aqua regia (total content) and in the solution of 0.01 M CaCI2. Total and labile trace elements content was correlated with determined carbon fractions and soil reaction. Results showed that studied soils content low amount of TOC and had low quality of humic substances. HA/FA ratio was less than 1 and colour indexes were higher than 4. All determined carbon fractions correlated with labile form of Zn and Cd. Correlation between soil reaction and total zinc content was found. Significant effect of humic substances content on to water-soluble forms of heavy metals was detected.展开更多
Silver nanoparticles (Ag-NPs) were prepared using an electrochemical technique. The optical properties were measured by absorption spectroscopy. The dimension of the prepared nanoparticles as estimated by the Atomic...Silver nanoparticles (Ag-NPs) were prepared using an electrochemical technique. The optical properties were measured by absorption spectroscopy. The dimension of the prepared nanoparticles as estimated by the Atomic Force Microscope (AFM), was 91.57 nm. This reaserch effort proposes a mechanism for reducing the size of silver nanoparticles by adding the hydrogen peroxide (H202), and protecting the silver nanoparticle to inhibit agglomeration by adding PVP polymer.展开更多
In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have establishe...In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.展开更多
Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and struct...Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.展开更多
The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is d...The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is demonstrated. Mercury content in sample Tuna Fish ISPRA T22 was determined to value the accuracy of the determination. The concentration in this sample is not certified, so, the Hg amount was determined also with atomic absorption spectroscopy (AAS): the results obtained with ASV were in good agreement and confirmed literature value reported for this sample. Then, real samples of tuna fish were analyzed. The voltammetric analyses were performed using previously optimized conditions (deposition potential 0 V, step potential 0.004 V, frequency 150 Hz and amplitude 0.003 V). Medium exchange technique permitted to eliminate possible matrix effects. The concentrations in the real samples were found to be in agreement with the common Hg levels reported in literature for commercialized tuna fish in different countries.展开更多
文摘The photo-physical characteristics of semiconductor polymer are systematically stud- ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co- benzothiadiazole) (F8BT). The quantum chemical calculation shows that the introduction of benzothiadiazole unit facilitates the intrachain charge transfer (ICT) and modulates the electronic transition mechanism of polymer. The transient absorption measurement exhibits that intrachain exciton relaxation is dominant in the decay of excited PFO in a monodis- perse system and intrachain exciton interaction could appear at high excitation intensity. In F8BT solution, the ICT state exists and participates in the relaxation of excited state. The relaxation processes of PFO and F8BT in the condensed phase both accelerate and show obvious exciton-exciton annihilation behavior at high excitation intensity. At the same excitation intensity, the mean lifetime of F8BT is longer than that of PFO, which may be assigned to the excellent delocalization of charge.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21103161 and No.11274142) and the China Postdoctoral Science Foundation (No.2011M500927).
文摘The excited state photophysics of low bandgap polymer APFO3 has been investigated in detail. The chemical calculations confirm that the intrachain charge transfer (ICT) may occur after photo-excitation and is mainly responsible for the first absorption band. The transient absorption results confirm that ICT indeed exists and competes with the vibra-tional relaxation at the same time, when APFO3 is in a monodisperse system. This ICT process would disappear due to the influence of interchain interaction when APFO3 is in the condensed phase, where the exciton decay would be dominant in the relaxation process after photoexcitation. The photoexcitation dynamics of APFO3 film blending with PC61BM are presented, which shows that the exciton may be dissociated completely as the percentage of PC61BM reaches ~50%. Meanwhile, the photovoltaic performance based on blend het-erojunction shows that the increase of photocurrent is little if the percentage of PC61BM exceeds ~50%. Overall, the present study has covered several fundamental processes taking place in the APFO3 polymer.
基金Supported by the Fundamental Research Funds for the Central Universities(04040022212005)
文摘In this paper,effects of conditions in phenol sulfonic acid(PSA) plating for tin coating of MR low carbon aluminum killed steel on trace Pb were examined.Trace Pb was measured by atomic absorption spectrometry(AAS)and glow discharge spectrometry,and coating morphology was observed by scanning electronic microscopy(SEM).Corrosion resistance of the tin coating was analyzed by electrochemical methods.The results indicated that Pb content in the tin coating reduced as bath temperature increased.When the temperature exceeded40 ℃,the grains in the coating were coarse and loose,reducing the corrosion resistance.As current density increased,Pb content increased rapidly,while low current density plating could lead to drain regions.The plating speed had no obvious effect on trace Pb in tin coating.In the tin plating layer,Pb was enriched at the surface and gradually reduced to zero along the depth.At bath temperature of 40 ℃ and current density of 20 A·dm^(-2),the amount of Pb could be less than 100 mg·kg^(-1) with excellent corrosion resistance.
基金This work was supported by the "Strategic Priority Research Program, TMSR" of the Chinese Academy of Sciences (No.XD02002400), the National Natural Science Foundation of China (No.51506214), the Hundred Talents Program, CAS and Shanghai Pujiang Program.
文摘On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.
基金Projects(20772101,50473046) supported by the National Natural Science Foundation of ChinaProject(2007FJ3017) supported by the Hunan Provincial Science Foundation, ChinaProject(07C764) supported by the Science Foundation of the Education Department of Hunan Province,China
文摘An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.
文摘Cadmium (Cd) concentrations in the water extracts of ten contaminated soils by arsenic (As) with various iron (Fe) contents were measured using inductively coupled plasma atomic emission spectrometry (ICP-AES) and electrothermal atomic absorption spectrometry (ETAAS), Due to the potential spectral interferences of As and Fe in the quantification of Cd, two methods were used for the background compensation. The first method was based on the use of a deuterium lamp (BGCD2 mode). The second one required a Cd hollow cathode lamp pulsated with a current for which the intensity varies in the course of time (BGCSR mode). The results showed that the choices of the analytical technique and the method used for the background compensation depend on the Cd, As and Fe concentrations in the solution and the concentration ratios As/Cd or/and Fe/Cd. In comparison with the ICP-AES and the ETAAS in combination with the BGCD2 mode, it was shown that the high-speed self-reversal method (HSSR) was a more appropriate method to correct As and Fe spectral interferences during the Cd measurements. On the other hand, depending on the Cd concentration, it was established that no significant Fe interference occurred during the Cd determination even if Fe concentration was 50 mg/L, reflecting the efficiency of the HSSR method to overcome the Fe interferences in the determination of Cd concentration by ETAAS without any matrix modifier in water extracts.
文摘Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.
基金National Natural Science Foundation of China (No50673062)
文摘Aggregation behavior of C.I.Direct Blue 86 was discussed using analyses of its UV-Vis spectra.The experiment results show that the dye molecules are inclined to aggregate in aqueous solution.Even in a very dilute solution of 0.050μmol/L,A618/A659 =1.2398,showing that the dye monomers still coexist with its dimers.The strong aggregation trend may cause dye precipitates at a higher concentration,which is an important factor that should be considered in producing a formula of ink-jet inks containing the dye as a colorant.
文摘The geometries and electronic spectra of a series of N-protonated corroles, including unsub- stituted H4Cor+ and meso-triaryl substituted H4TPC+, H4TpFPC+, and H4TdCPC+, were theoretically studied with density functional theory (DFT). The results indicate that all these compounds have two conformers, one with C2 symmetry (denoted as Sl) is more stable than the other (denoted as $2, C1 symmetry) by 15.8-18.5 kJ/mol. The corrole macrocycles of these compounds show significant out-of-plane deformation. The enantiomerizations of the chiral S1 conformers were found to be a multi-step process with the $2 conformers as the intermediates. Electronic absorption spectra and electronic circular dichroism (ECD) of these compounds were calculated with time-dependent DFT. In comparison with H4Cor+, the UV- Vis absorptions of meso-triaryl species are significantly red-shifted and their Q bands are enhanced due to the π-π conjugation between the aryl and corrole rings. Several neighboring electronic transitions were calculated with opposite signs in rotatory strengths, suggesting that ECD spectroscopy may be a useful tool in studying the electronic transitions of these compounds.
文摘Trace element analysis on hair samples has been widely used to assess wildlife and human exposure to different contaminants present in the environment or at the workplace. Pollutants due to the presence of toxic metals in environment not only enter the body by breading, water, and foodstuff accumulates in hair, but they could be adsorbed directly on the hair from environment. In order to remove adsorbed elements and thus determine the internally bound elements correctly, hair sample must be washed. In the present work, we propose uncertainty estimation for the analytical results that are obtained from determination of cadmium, lead, copper, iron, manganese and nickel in human hair by flame and electrothermal atomic absorption spectrometry (FAAS and ETAAS). To estimate the uncertainty of analytical result obtained, two types of bias are calculated in the assessment of trueness: a proportional bias and a constant bias. Nested design was applied for calculating proportional bias and Youden method to calculate the constant bias. The results we obtained for proportional bias are calculated from spiked samples. In this case, the concentration found is plotted against the concentration added and the slop of standard addition curve is an estimate of the method recovery. Estimated method of average recovery in human hair is: (1.019 ±0.026), (0.918 ±0.014), (1.073±0.016), (1.0597± 0.017), (1.073± 0.020) and (0.934± 0.117) for Cd, Pb, Mn, Ni, Fe and Cu respectively.
文摘The significance of research of water system is demonstrated by the experiments and statistical data. Some physical and chemical properties of water system affected by various factors in the nature are given. It also points out that further research of the effect on extremely complicated water system caused by electricity, magnetic field, sound and light now becomes an important research subject.
基金Supported by National Science Foundation of China under Grant No.10647132the Scientific Research Fund of Hunan Provincial Education Department under Grant No.05B014
文摘Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is driven by thedc and ac electric fields. The slow variation in the intraband polarization depends on the ac electric field frequency. Theintraband polarization increases when the ac electric field frequency is below the Bloch frequency. When the ac electricfield frequency is above the Bloch frequency, the intraband polarization downwards and its intensity decreases. Thesatellite structures in the optical absorption spectra are presented. Due to excitonic dynamic localization, the emissionlines of terahertz shift in different ac electric field and dc electric field.
文摘Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-bylayber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex fihns is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.
基金the National Natural Science Foundation of China(No.11874242,No.11804196,No.11804197)support provided by China Scholarship Council(CSC)for Yong Ma to Royal Institute of Technology(KTH)is acknowledgedsupport of the Taishan Scholar Project of Shandong Province。
文摘The geometric and electronic structures of several possible adsorption configurations of the pyrazine(C4H4N2)molecule covalently attached to Si(100)surface,which is of vital importance in fabricating functional nano-devices,have been investigated using X-ray spectroscopies.The Carbon K-shell(1s)X-ray photoelectron spectroscopy(XPS)and near-edge X-ray absorption fine structure(NEXAFS)spectroscopy of predicted adsorbed structures have been simulated by density functional theory with cluster model calculations.Both XPS and NEXAFS spectra demonstrate the structural dependence on different adsorption configurations.In contrast to the XPS spectra,it is found that the NEXAFS spectra exhibiting conspicuous dependence on the structures of all the studied pyrazine/Si(100)systems can be well utilized for structural identification.In addition,according to the classification of carbon atoms,the spectral components of carbon atoms in different chemical environments have been investigated in the NEXAFS spectra as well.
文摘Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, humic substances (HS) content, humic acids (HA) content, fulvic acids (FA), hot water extractable carbon (Chw) content and content total and labile trace elements content. Humic substances quality was assessed by HA/FA ratio and by coloured indexes measured in ultraviolet and visible UV-VIS spectral range. The total and labile contents of Zn, Cd, Cu, Co, Pb, Mo and Se were determined by flame or electro-thermal atomic absorption spectrometry after extraction of the soil samples in the aqua regia (total content) and in the solution of 0.01 M CaCI2. Total and labile trace elements content was correlated with determined carbon fractions and soil reaction. Results showed that studied soils content low amount of TOC and had low quality of humic substances. HA/FA ratio was less than 1 and colour indexes were higher than 4. All determined carbon fractions correlated with labile form of Zn and Cd. Correlation between soil reaction and total zinc content was found. Significant effect of humic substances content on to water-soluble forms of heavy metals was detected.
文摘Silver nanoparticles (Ag-NPs) were prepared using an electrochemical technique. The optical properties were measured by absorption spectroscopy. The dimension of the prepared nanoparticles as estimated by the Atomic Force Microscope (AFM), was 91.57 nm. This reaserch effort proposes a mechanism for reducing the size of silver nanoparticles by adding the hydrogen peroxide (H202), and protecting the silver nanoparticle to inhibit agglomeration by adding PVP polymer.
文摘In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.
文摘Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.
文摘The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is demonstrated. Mercury content in sample Tuna Fish ISPRA T22 was determined to value the accuracy of the determination. The concentration in this sample is not certified, so, the Hg amount was determined also with atomic absorption spectroscopy (AAS): the results obtained with ASV were in good agreement and confirmed literature value reported for this sample. Then, real samples of tuna fish were analyzed. The voltammetric analyses were performed using previously optimized conditions (deposition potential 0 V, step potential 0.004 V, frequency 150 Hz and amplitude 0.003 V). Medium exchange technique permitted to eliminate possible matrix effects. The concentrations in the real samples were found to be in agreement with the common Hg levels reported in literature for commercialized tuna fish in different countries.