Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrol...Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrolyte was as follows: white sand 〈 anionic resin 〈 zeolite 〈 kaolin 〈 activated carbon 〈 bentonite. Bentonite was characterized using FTIR, XRF, XRD, SEM and BET methods. The results show specific surface area of 95 m2/g and particles size of 175 nm for bentonite. The optimum conditions for the maximum removal of Sb are contact time 10 min, 4 g bentonite and temperature of 40 ° C. The adsorption of Sb(V) on bentonite is followed by pseudo-second-order kinetic (R2=0.996 and k=9×10?5 g/(mg· min)). Thermodynamic results reveal that the adsorption of Sb(V) onto bentonite from copper electrolyte is endothermic and spontaneous process (ΔGΘ=?4806 kJ/(mol· K). The adsorption data fit both the Freundlich and Langmuir isotherm models. Bentonite has the maximum adsorption capacity of 10000 mg/g for adsorption of Sb(V) in copper electrolyte. The adsorption of Zn, Co, Cu and Bi that present in the copper electrolyte is very low and insignificant.展开更多
A new kind of electrophoretic affinity chromatography (EAC) for bioseparation was proposed. Separation by EAC was conducted in a multicompartment electrolyzer in which the affinity gel media were packed in one of the ...A new kind of electrophoretic affinity chromatography (EAC) for bioseparation was proposed. Separation by EAC was conducted in a multicompartment electrolyzer in which the affinity gel media were packed in one of the central compartments. The presence of an electric field accelerated the migration of proteins inside the gel matrix during adsorption and desorption processes. This led to the increase of the overall speed of separation. The present study was focused on the effect of the strength of the electric field on adsorption and desorption processes.展开更多
Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption...Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650 ℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg.g-1. The mor- phology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area. lar2er oore volume and anoropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.展开更多
Three hydrophobic charge-induction adsorbents with functional ligands of 4-mercapto-ethyl-pyridine, 2-mercapto-methyl-imidazole or 2-mercapto-benzimidazole were evaluated in the purification of porcine immunoglobulin ...Three hydrophobic charge-induction adsorbents with functional ligands of 4-mercapto-ethyl-pyridine, 2-mercapto-methyl-imidazole or 2-mercapto-benzimidazole were evaluated in the purification of porcine immunoglobulin from porcine blood. Adsorption isotherms were studied under different pH conditions. The adsorbent with 2-mercapto-methyl-imidazole as the ligand showed reasonable adsorption capacity(43.60 mg·g^(-1)gel)with great selectivity and it also showed the best elution performance in chromatographic studies. A multi-pH step elution process was proposed for the 2-mercapto-methyl-imidazole adsorbent, and the results showed that high immunoglobulin purity(94.3%) and a yield of 9.8 mg·(ml plasma)^(-1) could be achieved under the optimal condition of loading(pH 5.0)–pre-elution(pH 7.0)–elution(pH 3.8). Moreover, molecular simulation was employed to help in analyzing the binding mechanism between the ligands and immunoglobulin, and the results showed that both 2-mercapto-benzimidazole and 2-mercapto-methyl-imidazole ligands were docked on the same pocket(around TYR319 and LEU309) of the Fc fragment of immunoglobulin, with 2-mercaptobenzimidazole showing stronger binding interactions.展开更多
This study investigated the adsorption ability of ZCHC (zeolite/chitosan hybrid composite) as adsorbent for chromium (Cr(Ⅵ)), ZCHC was prepared with sol-gel method by mixing zeolite and chitosan. Adsorption exp...This study investigated the adsorption ability of ZCHC (zeolite/chitosan hybrid composite) as adsorbent for chromium (Cr(Ⅵ)), ZCHC was prepared with sol-gel method by mixing zeolite and chitosan. Adsorption experiment from aqueous solutions containing known amount of Cr(Ⅵ) using zeolite, chitosan and ZCHC was explored to evaluate the efficiency of ZCHC as adsorbent for Cr in a batch system. The amount of Cr(Ⅵ) adsorbed at different pH values, initial concentrations, adsorbent dosages, and contact times were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry) in order to determine the optimum conditions for Cr(Ⅵ) adsorption. Furthermore, the adsorption mechanism of Cr(Ⅵ) by zeolite, chitosan and ZCHC was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, the rates of adsorption were found to conform to pseudo-second order kinetics.展开更多
The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous s...The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous solutions. The materials synthesized in this work were characterized by chemical analysis, FT-IR (fourier transform infrared spectroscopy), XRD (X-ray powder diffraction) to confirm their properties. In order to investigate the optimum conditions for Cd(II) adsorption, the amount of Cd(ll) adsorbed by Zn-AI LDHs intercalated with EDTA (ZnAI-EDTA) under different conditions (i.e., adsorbent dosage, temperature and contact time) were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry). Adsorption isotherms of Cd(II) onto ZnA1-EDTA were measured at varying initial Cd concentrations (0.05 mg/L to 1 mg/L) under optimized conditions. The data were applied to Langmuir and Freundlich isotherms model, and well fitted by the Freundlich isotherms model. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case.展开更多
In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The ac...In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC.展开更多
Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 materi...Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 material was synthesized by hydrolysis and co-condensation of 1,3-bis-(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC) under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane in toluene under reflux conditions. This material was characterized using scanning electron microscopy(SEM), diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), thermal gravimetric analysis(TGA) and energy dispersive X-ray analysis(EDAX). The material was effectively used in the removal of crystal violet at ambient temperature and showed high capacity and stability under applied conditions. The efficacy of p H, contact time, adsorbent dose, initial dye concentration, temperature, and isotherm studies and the applicability of pseudo-first, second order and Elovich kinetic models have also been investigated.展开更多
The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction(HER)is of great importance for water splitting.Herein,we develop a facile approach for preparation...The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction(HER)is of great importance for water splitting.Herein,we develop a facile approach for preparation of porous carbon-confined Ru-doped Cu nanoparticles(denoted as Ru-Cu@C)by direct pyrolysis of the Ru-exchanged Cu-BTC metal–organic framework.When served as the electrocatalyst for HER,strikingly,the obtained Ru-Cu@C catalyst exhibits an ultralow overpotential(only 20 mV at 10 mA cm^(-2))with a small Tafel slope of 37 m V dec^(-1)in alkaline electrolyte.The excellent performance is comparable or even superior to that of commercial Pt/C catalyst.Density functional theory(DFT)calculations confirm that introducing Ru atoms into Cu nanocrystals can significantly alter the desorption of H_(2) to achieve a close-to-zero hydrogen adsorption energy and thereby boost the HER process.This strategy gives a fresh impetus to explore low-cost and high-performance catalysts for HER in alkaline media.展开更多
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated....The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ)>Cd(Ⅱ)>Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.展开更多
Among all CO2 electroreduction products,methane(CH4)and ethylene(C_(2)H_(4))are two typical and valuable hydrocarbon products which are formed in two different pathways:hydrogenation and dimerization reactions of the ...Among all CO2 electroreduction products,methane(CH4)and ethylene(C_(2)H_(4))are two typical and valuable hydrocarbon products which are formed in two different pathways:hydrogenation and dimerization reactions of the same CO intermediate.Theoretical studies show that the adsorption configurations of CO intermediate determine the reaction pathways towards CH4/C_(2)H_(4).However,it is challenging to experimentally control the CO adsorption configurations at the catalyst surface,and thus the hydrocarbon selectivity is still limited.Herein,we seek to synthesize two well-defined copper nanocatalysts with controllable surface structures.The two model catalysts exhibit a high hydrocarbon selectivity toward either CH4(83%)or C_(2)H_(4)(93%)under identical reduction conditions.Scanning transmission electron microscopy and X-ray absorption spectroscopy characterizations reveal the low-coordination Cu^(0)sites and local Cu^(0)/Cu^(+)sites of the two catalysts,respectively.CO-temperature programed desorption,in-situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory studies unveil that the bridge-adsorbed CO(CO_(B))on the low-coordination Cu^(0)sites is apt to be hydrogenated to CH4,whereas the bridge-adsorbed CO plus linear-adsorbed CO(CO_(B)+CO_(L))on the local Cu^(0)/Cu^(+)sites are apt to be coupled to C_(2)H_(4).Our findings pave a new way to design catalysts with controllable CO adsorption configurations for high hydrocarbon product selectivity.展开更多
The CO_2 absorption ability of synthetic calcium-based sorbent modified by peanut husk ash (PHA) was tested by Thermal Gravimetric Analyzer (TGA), and the effects of steam and calcination temperature were investigate...The CO_2 absorption ability of synthetic calcium-based sorbent modified by peanut husk ash (PHA) was tested by Thermal Gravimetric Analyzer (TGA), and the effects of steam and calcination temperature were investigated. The PHA composition was analyzed by X-Ray Fluorescence (XRF), the apparent morphology was characterized by scanning electron microscope (SEM), and the phases of the sorbent before and after calcination were examined by X-ray diffraction (XRD). The addition of PHA effectively improved the cyclic stability of the calcium-based sorbent. The optimal molar ratio of SiO_2 in PHA to CaO was around 0.07. Steam had positive effect on keeping porosity of the sorbent at the chemical reaction stage, and improved its CO_2 absorption ability. Steam also reduced the diffusion resistance of the product layer, and depressed the influence of high temperature calcination. It was also found that the steam hydration after calcination was an effective way to recover the absorption ability of the sorbent, while the hydration duration of 10 min was enough.展开更多
基金Kerman-Sarcheshmeh copper electrorefining(Iran)and Islamic Azad University,Yazd Brunch for support to carry out this work
文摘Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrolyte was as follows: white sand 〈 anionic resin 〈 zeolite 〈 kaolin 〈 activated carbon 〈 bentonite. Bentonite was characterized using FTIR, XRF, XRD, SEM and BET methods. The results show specific surface area of 95 m2/g and particles size of 175 nm for bentonite. The optimum conditions for the maximum removal of Sb are contact time 10 min, 4 g bentonite and temperature of 40 ° C. The adsorption of Sb(V) on bentonite is followed by pseudo-second-order kinetic (R2=0.996 and k=9×10?5 g/(mg· min)). Thermodynamic results reveal that the adsorption of Sb(V) onto bentonite from copper electrolyte is endothermic and spontaneous process (ΔGΘ=?4806 kJ/(mol· K). The adsorption data fit both the Freundlich and Langmuir isotherm models. Bentonite has the maximum adsorption capacity of 10000 mg/g for adsorption of Sb(V) in copper electrolyte. The adsorption of Zn, Co, Cu and Bi that present in the copper electrolyte is very low and insignificant.
基金Supported by the State Key Projects(No.96c-03-04-05).
文摘A new kind of electrophoretic affinity chromatography (EAC) for bioseparation was proposed. Separation by EAC was conducted in a multicompartment electrolyzer in which the affinity gel media were packed in one of the central compartments. The presence of an electric field accelerated the migration of proteins inside the gel matrix during adsorption and desorption processes. This led to the increase of the overall speed of separation. The present study was focused on the effect of the strength of the electric field on adsorption and desorption processes.
基金Supported by the National Natural Science Foundation of China (21006053), the Fundamental Research Funds for the Central Universities (65010551) and Special Projects of Environmental Protection (2009ZX07208).
文摘Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650 ℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg.g-1. The mor- phology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area. lar2er oore volume and anoropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.
基金Supported by the National Natural Science Foundation of China(21276228 and21476198)the Natural Science Foundation of Zhejiang Province(LR12B06003)the Fundamental Research Funds for the Central Universities(2013QNA4032)
文摘Three hydrophobic charge-induction adsorbents with functional ligands of 4-mercapto-ethyl-pyridine, 2-mercapto-methyl-imidazole or 2-mercapto-benzimidazole were evaluated in the purification of porcine immunoglobulin from porcine blood. Adsorption isotherms were studied under different pH conditions. The adsorbent with 2-mercapto-methyl-imidazole as the ligand showed reasonable adsorption capacity(43.60 mg·g^(-1)gel)with great selectivity and it also showed the best elution performance in chromatographic studies. A multi-pH step elution process was proposed for the 2-mercapto-methyl-imidazole adsorbent, and the results showed that high immunoglobulin purity(94.3%) and a yield of 9.8 mg·(ml plasma)^(-1) could be achieved under the optimal condition of loading(pH 5.0)–pre-elution(pH 7.0)–elution(pH 3.8). Moreover, molecular simulation was employed to help in analyzing the binding mechanism between the ligands and immunoglobulin, and the results showed that both 2-mercapto-benzimidazole and 2-mercapto-methyl-imidazole ligands were docked on the same pocket(around TYR319 and LEU309) of the Fc fragment of immunoglobulin, with 2-mercaptobenzimidazole showing stronger binding interactions.
文摘This study investigated the adsorption ability of ZCHC (zeolite/chitosan hybrid composite) as adsorbent for chromium (Cr(Ⅵ)), ZCHC was prepared with sol-gel method by mixing zeolite and chitosan. Adsorption experiment from aqueous solutions containing known amount of Cr(Ⅵ) using zeolite, chitosan and ZCHC was explored to evaluate the efficiency of ZCHC as adsorbent for Cr in a batch system. The amount of Cr(Ⅵ) adsorbed at different pH values, initial concentrations, adsorbent dosages, and contact times were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry) in order to determine the optimum conditions for Cr(Ⅵ) adsorption. Furthermore, the adsorption mechanism of Cr(Ⅵ) by zeolite, chitosan and ZCHC was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, the rates of adsorption were found to conform to pseudo-second order kinetics.
文摘The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous solutions. The materials synthesized in this work were characterized by chemical analysis, FT-IR (fourier transform infrared spectroscopy), XRD (X-ray powder diffraction) to confirm their properties. In order to investigate the optimum conditions for Cd(II) adsorption, the amount of Cd(ll) adsorbed by Zn-AI LDHs intercalated with EDTA (ZnAI-EDTA) under different conditions (i.e., adsorbent dosage, temperature and contact time) were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry). Adsorption isotherms of Cd(II) onto ZnA1-EDTA were measured at varying initial Cd concentrations (0.05 mg/L to 1 mg/L) under optimized conditions. The data were applied to Langmuir and Freundlich isotherms model, and well fitted by the Freundlich isotherms model. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case.
基金The Department of Science and Technology of Henan Province (No. 0324210007)
文摘In this paper, MPt/C (M= La, Nd) catalysts of PEMFC were synthesized by microwave radiation process. The crystallinity and structure of catalysts were respectively analyzed by XRD and nitrogen adsorption tests. The activity of catalysts was investigated by electrochemistry experiment. The results showed that: 1) compared with Pt/C catalyst prepared by typical impregnation-reduction process, the size of MPt/C catalyst particle decreased and the available crystal for O2 reduction increased; 2) the MPt/C catalysts had relatively high BET surface areas; and 3)these crystal transformations of the MPt/C catalyst brought high the electrocatalytic activity, and as a result, improved the power of PEMFC.
基金Supported by the National Science Foundation of Iran
文摘Herein a novel aminopropyl-containing ionic liquid based organosilica(ILOS-NH_2) is prepared, characterized and applied as effective adsorbent for removal of crystal violet(CV) dye from wastewater. The ILOS-NH2 material was synthesized by hydrolysis and co-condensation of 1,3-bis-(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC) under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane in toluene under reflux conditions. This material was characterized using scanning electron microscopy(SEM), diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), thermal gravimetric analysis(TGA) and energy dispersive X-ray analysis(EDAX). The material was effectively used in the removal of crystal violet at ambient temperature and showed high capacity and stability under applied conditions. The efficacy of p H, contact time, adsorbent dose, initial dye concentration, temperature, and isotherm studies and the applicability of pseudo-first, second order and Elovich kinetic models have also been investigated.
基金the National Key R&D Program of China(2018YFB0605700)the National Natural Science Foundation of China(51778570,51879230,21725101,21871244,21521001,and 21703145)+1 种基金China Postdoctoral Science Foundation(2019TQ0298,2019M660151)Fujian Institute of Innovation(CAS)。
文摘The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction(HER)is of great importance for water splitting.Herein,we develop a facile approach for preparation of porous carbon-confined Ru-doped Cu nanoparticles(denoted as Ru-Cu@C)by direct pyrolysis of the Ru-exchanged Cu-BTC metal–organic framework.When served as the electrocatalyst for HER,strikingly,the obtained Ru-Cu@C catalyst exhibits an ultralow overpotential(only 20 mV at 10 mA cm^(-2))with a small Tafel slope of 37 m V dec^(-1)in alkaline electrolyte.The excellent performance is comparable or even superior to that of commercial Pt/C catalyst.Density functional theory(DFT)calculations confirm that introducing Ru atoms into Cu nanocrystals can significantly alter the desorption of H_(2) to achieve a close-to-zero hydrogen adsorption energy and thereby boost the HER process.This strategy gives a fresh impetus to explore low-cost and high-performance catalysts for HER in alkaline media.
文摘The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ)>Cd(Ⅱ)>Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.
基金supported by the National Natural Science Foundation of China (21875042)Shanghai Science and Technology Committee (18QA1400800)+1 种基金the Program of Eastern Scholar at Shanghai Institutions and Yanchang Petroleum Groupsupported by the Frontier Research Center for Materials Structure, School of Materials Science and Engineering of Shanghai Jiao Tong University
文摘Among all CO2 electroreduction products,methane(CH4)and ethylene(C_(2)H_(4))are two typical and valuable hydrocarbon products which are formed in two different pathways:hydrogenation and dimerization reactions of the same CO intermediate.Theoretical studies show that the adsorption configurations of CO intermediate determine the reaction pathways towards CH4/C_(2)H_(4).However,it is challenging to experimentally control the CO adsorption configurations at the catalyst surface,and thus the hydrocarbon selectivity is still limited.Herein,we seek to synthesize two well-defined copper nanocatalysts with controllable surface structures.The two model catalysts exhibit a high hydrocarbon selectivity toward either CH4(83%)or C_(2)H_(4)(93%)under identical reduction conditions.Scanning transmission electron microscopy and X-ray absorption spectroscopy characterizations reveal the low-coordination Cu^(0)sites and local Cu^(0)/Cu^(+)sites of the two catalysts,respectively.CO-temperature programed desorption,in-situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory studies unveil that the bridge-adsorbed CO(CO_(B))on the low-coordination Cu^(0)sites is apt to be hydrogenated to CH4,whereas the bridge-adsorbed CO plus linear-adsorbed CO(CO_(B)+CO_(L))on the local Cu^(0)/Cu^(+)sites are apt to be coupled to C_(2)H_(4).Our findings pave a new way to design catalysts with controllable CO adsorption configurations for high hydrocarbon product selectivity.
基金supported by the National Natural Science Foundation of China (Grant No. 51406198)
文摘The CO_2 absorption ability of synthetic calcium-based sorbent modified by peanut husk ash (PHA) was tested by Thermal Gravimetric Analyzer (TGA), and the effects of steam and calcination temperature were investigated. The PHA composition was analyzed by X-Ray Fluorescence (XRF), the apparent morphology was characterized by scanning electron microscope (SEM), and the phases of the sorbent before and after calcination were examined by X-ray diffraction (XRD). The addition of PHA effectively improved the cyclic stability of the calcium-based sorbent. The optimal molar ratio of SiO_2 in PHA to CaO was around 0.07. Steam had positive effect on keeping porosity of the sorbent at the chemical reaction stage, and improved its CO_2 absorption ability. Steam also reduced the diffusion resistance of the product layer, and depressed the influence of high temperature calcination. It was also found that the steam hydration after calcination was an effective way to recover the absorption ability of the sorbent, while the hydration duration of 10 min was enough.