Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite...Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.展开更多
In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photo...In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.展开更多
The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide sy...The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.展开更多
There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of t...There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.展开更多
This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabr...This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.展开更多
Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of...Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.展开更多
In order to design a new type of quick charger for NiMH battery, the new method of pulse charge discharge was adopted after studying the charge process and analyzing the NiMH battery charge characteristics. The charg...In order to design a new type of quick charger for NiMH battery, the new method of pulse charge discharge was adopted after studying the charge process and analyzing the NiMH battery charge characteristics. The charge and discharge experiments were carried out to check feasibility and superiority of the new method. The results indicated that with the discharge pulse added the charger can charge quickly, the battery voltage and temperature can be properly controlled to prevent the battery being destroyed, and the capacity of the NiMH battery is greater than that of the battery without the discharge pulse added.展开更多
Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrop...Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.展开更多
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface...A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.展开更多
A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) mult...A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a global one. When there are more than one maximum matches at a time, the best match choice in the GOA has the least impact on the final result by only choosing the pair with the smallest relational value instead of choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by 51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26% if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general parallel architecture in which many GF multipliers are involved.展开更多
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
基金Project(2108085ME184)supported by the Natural Science Foundation of Anhui Province,ChinaProject(2022AH010019)supported by the Innovation Team Project of Anhui Provincial Department of Education,China+1 种基金Project(GXXT-2021-057)supported by the Collaborative Innovation Project of Anhui Provincial Department of Education,ChinaProject(2020QDZ36)supported by the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University,China。
文摘Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.
基金National Natural Science Foundation of China(62074056)Fundamental Research Funds for the Central Universities。
文摘In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.
基金supported by the Fundamental Research Funds for the Central Universities(WK9990000102,WK2030000035).
文摘The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.
文摘There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.
基金National Natural Science Foundation of China(No.12004070)。
文摘This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.
基金Project supported by University New Materials Disciplines Construction Program of Beijing Region
文摘Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.
文摘In order to design a new type of quick charger for NiMH battery, the new method of pulse charge discharge was adopted after studying the charge process and analyzing the NiMH battery charge characteristics. The charge and discharge experiments were carried out to check feasibility and superiority of the new method. The results indicated that with the discharge pulse added the charger can charge quickly, the battery voltage and temperature can be properly controlled to prevent the battery being destroyed, and the capacity of the NiMH battery is greater than that of the battery without the discharge pulse added.
基金Projects(21361020,21061012)supported by the National Natural Science Foundation of ChinaProject(NZ12156)supported by the Natural Science Foundation of Ningxia,ChinaProject(N-09-13)supported by Project of State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics of the Chinese Academy of Sciences
文摘Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.
文摘A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.
文摘A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a global one. When there are more than one maximum matches at a time, the best match choice in the GOA has the least impact on the final result by only choosing the pair with the smallest relational value instead of choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by 51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26% if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general parallel architecture in which many GF multipliers are involved.