Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding shou...Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.展开更多
This paper proposes a new type of pulse launcher that applies the principle of linear motors. The stator, viz. gun barrel, of the launcher has a new structure of one segment of iron core consisting of 3 staggered lami...This paper proposes a new type of pulse launcher that applies the principle of linear motors. The stator, viz. gun barrel, of the launcher has a new structure of one segment of iron core consisting of 3 staggered laminations. This structure is helpful in advancing the thrust force per volume. Based on introducing the structure and the working principles, this paper resolves the electromagnetic thrusting force and performs mechanical analysis and experiments on the sample launcher. The research shows that this launcher is simple and brushless structure with brief controlling.展开更多
According to the principle of bionics, a prototype of the earthworm-like micro robot was developed and manufactured for entering the small tube. Based on the process of the action and mechanics analysis, the controlle...According to the principle of bionics, a prototype of the earthworm-like micro robot was developed and manufactured for entering the small tube. Based on the process of the action and mechanics analysis, the controller was designed. This micro robot with 6mm diameter was driven directly by three electromagnetic linear drivers. Mobile cells were joined with two degree-of-freedom joint and the whole body was flexible and soft. The driving force reached 10.8g in normal working condition. The direction of movement and the angle of imaging can be controlled by the shape memory alloy (SMA). The driving force, velocity and movement of micro robot in flexural tube were tested through experiments, which indicated that the driving force was in proportion to the range of frequency, and the micro robot could current, and the velocity reached a maximum in certain move in the thin tube flexibly.展开更多
The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-sta...The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.展开更多
In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation struct...In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force (Pb) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95Pb static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86Pb working range. After 0.95Pb static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.展开更多
Conventional rigid machines, even biological systems in nature, generally do not own the capabilities like autonomous convergence or divergence. Here, such extraordinary behavior was demonstrated for the first time wi...Conventional rigid machines, even biological systems in nature, generally do not own the capabilities like autonomous convergence or divergence. Here, such extraordinary behavior was demonstrated for the first time with the liquid metal vehicle. This synthetic soft machine fueled with an aluminum flake could initiate its autonomous locomotion in an opentop circular channel containing NaOH solution, like a running vehicle. If cutting a large machine into several smaller separately running vehicles, each of them still resumes its traveling state along the original track and chases each other. If the volumes of such dispersive vehicles were close to each other and they were all squeezed in the channel, the vehicles would move syn-chronously with oscillation. Otherwise, such self-motion would become desynchronized with interval between the inequable vehicles decreased gradually. If their volumes were significantly different, and the smaller vehicles were not squeezed in the channel, the faster vehicle would overtake the slower ones, until they finally coalesced seamlessly. The assembled vehicle could deform itself along with change of its velocity. This finding may shedlight on future researches on smart material, fluid mechanics and soft matter to self-fueled machine and biomimics. It would also offer opportunities for constructing self-reconfigurable soft robots.展开更多
Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the rece...Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.展开更多
文摘Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz.
文摘This paper proposes a new type of pulse launcher that applies the principle of linear motors. The stator, viz. gun barrel, of the launcher has a new structure of one segment of iron core consisting of 3 staggered laminations. This structure is helpful in advancing the thrust force per volume. Based on introducing the structure and the working principles, this paper resolves the electromagnetic thrusting force and performs mechanical analysis and experiments on the sample launcher. The research shows that this launcher is simple and brushless structure with brief controlling.
文摘According to the principle of bionics, a prototype of the earthworm-like micro robot was developed and manufactured for entering the small tube. Based on the process of the action and mechanics analysis, the controller was designed. This micro robot with 6mm diameter was driven directly by three electromagnetic linear drivers. Mobile cells were joined with two degree-of-freedom joint and the whole body was flexible and soft. The driving force reached 10.8g in normal working condition. The direction of movement and the angle of imaging can be controlled by the shape memory alloy (SMA). The driving force, velocity and movement of micro robot in flexural tube were tested through experiments, which indicated that the driving force was in proportion to the range of frequency, and the micro robot could current, and the velocity reached a maximum in certain move in the thin tube flexibly.
文摘The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.
基金The research work reported in this paper was jointly supported by the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, China and FASTEN Group Company. Thanks to the support of Wuhan City Building Research Funds (201310), the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-090), and the National Natural Science Foundation of China (Major Program: 61290310). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force (Pb) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95Pb static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86Pb working range. After 0.95Pb static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.
基金supported by the National Natural Science Foundation of China(51376102)
文摘Conventional rigid machines, even biological systems in nature, generally do not own the capabilities like autonomous convergence or divergence. Here, such extraordinary behavior was demonstrated for the first time with the liquid metal vehicle. This synthetic soft machine fueled with an aluminum flake could initiate its autonomous locomotion in an opentop circular channel containing NaOH solution, like a running vehicle. If cutting a large machine into several smaller separately running vehicles, each of them still resumes its traveling state along the original track and chases each other. If the volumes of such dispersive vehicles were close to each other and they were all squeezed in the channel, the vehicles would move syn-chronously with oscillation. Otherwise, such self-motion would become desynchronized with interval between the inequable vehicles decreased gradually. If their volumes were significantly different, and the smaller vehicles were not squeezed in the channel, the faster vehicle would overtake the slower ones, until they finally coalesced seamlessly. The assembled vehicle could deform itself along with change of its velocity. This finding may shedlight on future researches on smart material, fluid mechanics and soft matter to self-fueled machine and biomimics. It would also offer opportunities for constructing self-reconfigurable soft robots.
基金supported by the National Natural Science Foundation of China(21971185)the Collaborative Innovation Center of Suzhou Nano Science and Technology(CIC-Nano)the"111"Project of The State Administration of Foreign Experts Affairs of China。
文摘Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.