[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be m...[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.展开更多
Activated carbon(AC)particles sandwiched reduced graphene oxide sheets(rGO)film has been successfully fabricated via a facile self-assemble approach.The as-formed AC/rGO film is self-standing,flexible and mechanically...Activated carbon(AC)particles sandwiched reduced graphene oxide sheets(rGO)film has been successfully fabricated via a facile self-assemble approach.The as-formed AC/rGO film is self-standing,flexible and mechanically robust,allowing to be transferred to any substrate on demand without rupture.Since AC particles effectively suppressed the restacking of the rGO sheet,AC/rGO film exhibits loose layer-by-layer stacking structures with various gaps between AC particles and rGO sheets,which is different from compact structures of pure graphene films.The as-formed gaps provide fast diffusion channels for electrolyte ions and enhanced accessible surface area of rGO.Therefore,the AC/rGO electrode delivers improved electrochemical performance over the voltage range of 0.0−3.0 V.This work offers a promising strategy to design free-standing supercapacitor electrodes based on traditional nanocarbon materials.展开更多
A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) o...A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) of 19μm × 19μm electrodes,a counter electrode, a current mode preamplifier circuit (CMPA) ,a digital decoding circuit,and control logics on a single chip, It provides a - 1.6- 1.6V range of assembly voltage,Sbit potential resolution, and a current gain of 39.8dB with supply voltage of 1.8V. The offset and noise are smaller than 5.9nA and 25.3pArms,respectively. Experimental resuits from on-chip selective assembly of 30nm poly (ethylene glycol) (PEG) coated magnetic nano-particles (MNPs) targeted at biosensor applications are included and discussed to verify the feasibility of the proposed circuits.展开更多
基金Supported by the Supporting Program of the"Eleventh Five-year Plan"for Sci&Tech Research of China(2006BAK20A29)Strategical Project for Science and Technology of Guangdong Province(2004A2090102)~~
文摘[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.
基金Project(21673102)supported by the National Natural Science Foundation of ChinaProjects(LY18B010006,LQ19B030005)supported by the Natural Science Foundation of Zhejiang Province,China。
文摘Activated carbon(AC)particles sandwiched reduced graphene oxide sheets(rGO)film has been successfully fabricated via a facile self-assemble approach.The as-formed AC/rGO film is self-standing,flexible and mechanically robust,allowing to be transferred to any substrate on demand without rupture.Since AC particles effectively suppressed the restacking of the rGO sheet,AC/rGO film exhibits loose layer-by-layer stacking structures with various gaps between AC particles and rGO sheets,which is different from compact structures of pure graphene films.The as-formed gaps provide fast diffusion channels for electrolyte ions and enhanced accessible surface area of rGO.Therefore,the AC/rGO electrode delivers improved electrochemical performance over the voltage range of 0.0−3.0 V.This work offers a promising strategy to design free-standing supercapacitor electrodes based on traditional nanocarbon materials.
文摘A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) of 19μm × 19μm electrodes,a counter electrode, a current mode preamplifier circuit (CMPA) ,a digital decoding circuit,and control logics on a single chip, It provides a - 1.6- 1.6V range of assembly voltage,Sbit potential resolution, and a current gain of 39.8dB with supply voltage of 1.8V. The offset and noise are smaller than 5.9nA and 25.3pArms,respectively. Experimental resuits from on-chip selective assembly of 30nm poly (ethylene glycol) (PEG) coated magnetic nano-particles (MNPs) targeted at biosensor applications are included and discussed to verify the feasibility of the proposed circuits.