This paper designs a mechanical swing of placementing mobile phone, which is inspired by the mechanical watch automatic winding process. The use of the kinetic energy generated by human body motion drives the wheel sw...This paper designs a mechanical swing of placementing mobile phone, which is inspired by the mechanical watch automatic winding process. The use of the kinetic energy generated by human body motion drives the wheel swing and the generator, it can carry out mobile phone additional charge through the electronic components rectifier and DC/DC converter regulator, the use of human motion and light energy can extend a fixed charge mobile phone standby time. The human motion power uses electromagnetic coupling technique and collects energy by using foot swing, solar power generation uses DSP chip in TMS320F28927 control a plurality of charging circuit, inverter circuit and solar maximum power point tracking by sampling and multiple output PWM wave. Finally, charging process has the basic constant current process discovered by device testing, the design of human motion and light energy mobile phone charger can satisfy the need of mobile phone rechargeable lithium batteries.展开更多
Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such...Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the avail- able transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.展开更多
文摘This paper designs a mechanical swing of placementing mobile phone, which is inspired by the mechanical watch automatic winding process. The use of the kinetic energy generated by human body motion drives the wheel swing and the generator, it can carry out mobile phone additional charge through the electronic components rectifier and DC/DC converter regulator, the use of human motion and light energy can extend a fixed charge mobile phone standby time. The human motion power uses electromagnetic coupling technique and collects energy by using foot swing, solar power generation uses DSP chip in TMS320F28927 control a plurality of charging circuit, inverter circuit and solar maximum power point tracking by sampling and multiple output PWM wave. Finally, charging process has the basic constant current process discovered by device testing, the design of human motion and light energy mobile phone charger can satisfy the need of mobile phone rechargeable lithium batteries.
基金supported by the Ministry of Higher Education of Malaysia and University of Malaya under the E-Science Fund Research Grant(No.SF005-2013)the UMRG Project RP015D-13AET
文摘Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the avail- able transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.