In this paper,we study the systematics of the 2_(1)^(+)states in the N=82 even-even isotones with proton numbers between 52 and 72.We calculate the level energies of the 0_(1)^(+),2_(1)^(+)states and the electric quad...In this paper,we study the systematics of the 2_(1)^(+)states in the N=82 even-even isotones with proton numbers between 52 and 72.We calculate the level energies of the 0_(1)^(+),2_(1)^(+)states and the electric quadrupole reduced transition probabilities B(E2;2_(1)^(+)→0_(1)^(+)),in the framework of the nuclear shell model with a monopole-and multipole-optimized realistic interaction.Our calculations yield good agreement with the experimental data and show a 2.5 MeV gap at Z=64 subshell closure in^(146)Gd.We predict that the B(E2;2_(1)^(+)→0_(1)^(+))value for^(146)Gd is close to those for^(142)Nd and^(144)Sm,and the values increase rapidly from^(148)Dy to^(152)Yb.展开更多
基金National Key R&D Program of China(2018YFA0404403)National Natural Science Foundation of China(12075169,12035011,11605122)Fundamental Research Funds for the Central Universities(22120240207)。
文摘In this paper,we study the systematics of the 2_(1)^(+)states in the N=82 even-even isotones with proton numbers between 52 and 72.We calculate the level energies of the 0_(1)^(+),2_(1)^(+)states and the electric quadrupole reduced transition probabilities B(E2;2_(1)^(+)→0_(1)^(+)),in the framework of the nuclear shell model with a monopole-and multipole-optimized realistic interaction.Our calculations yield good agreement with the experimental data and show a 2.5 MeV gap at Z=64 subshell closure in^(146)Gd.We predict that the B(E2;2_(1)^(+)→0_(1)^(+))value for^(146)Gd is close to those for^(142)Nd and^(144)Sm,and the values increase rapidly from^(148)Dy to^(152)Yb.