The damper is capable of providing a continuously variable dampering force/torque in response to a magnetic field. It consists of an upside cap and an underside cap with a rotor located between them, the magneto-rheol...The damper is capable of providing a continuously variable dampering force/torque in response to a magnetic field. It consists of an upside cap and an underside cap with a rotor located between them, the magneto-rheological (MR) fluid is filled into the gaps between the rotor and the caps. When the viscosity of the MR fluid increases under the influence of the magnetic field, the movement of the rotor will be resisted. The output torque is made up of the torque caused by the magnetic field, the torque caused by the plastic viscosity of the MR fluid, and the torque caused by the coulomb friction. The viscous torque can be calculated by a simple method and the frictional torque can be obtained by experiments. The torque dependent on the magnetic field is obtained by electromagnetic finite dement analysis. Experiments are done on the damper prototype and the validity of the design is verified.展开更多
Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to comp...Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to compute iteratively the freeze profile until the thickness variable reached the terminating requirement. The calculated 2D heat dissipation from the cell surfaces was converted into the overall 3D heat loss. The potential drop of the system, freeze profile and heat balance were analyzed to evaluate their variation with technical parameters when designing the 150 kA conventional cell based drained cell. The simulation results show that the retrofitted drained cell is able to keep thermal balance under the conditions that the current is 190 kA, the anodic current density is 0.96 A/cm2, the anode-cathode distance is 2.5 cm, the alumina cover is 16 cm thick with a thermal conductivity of 0.20 W/(m·℃ ) and the electrolysis temperature is 946 ℃ .展开更多
In this paper, a composite grid method (CGM) for finite element (FE) analysisof an electromagnetic field with strong local interest is proposed. The method is based on theregular finite element method in conjunction w...In this paper, a composite grid method (CGM) for finite element (FE) analysisof an electromagnetic field with strong local interest is proposed. The method is based on theregular finite element method in conjunction with three basic steps, i.e. global analysis, localanalysis, and modified global analysis. In the first two steps, a coarse finite element mesh is usedto analyze the global model to obtain the nodal potentials which are subsequently used asartificial boundary conditions for local regions of interest. These local regions with theprescribed boundary conditions are then analyzed with refined meshes to obtain more accuratepotential and density distribution In the third step, a modified global analysis is performed toobtain more improved solution for potential and density distribution. And iteratively, successivelyimproved solutions can be obtained until the desired accuracy is achieved. Various numericalexperiments show that CCM yields accurate solutions with significant savings in computing timecompared with the regular finite element method.展开更多
Conventional permanent magnet synchronous machine (PMSM) has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-...Conventional permanent magnet synchronous machine (PMSM) has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets (PMs) are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current i_d, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.展开更多
A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two str...A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.展开更多
A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 ...A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 rpm, short-duty, sinusoidal drive, low cogging, high efficiency at peak torque, and etc. for an ARWM (aerospace retraction wheel motor). In construction, the PMs (permanent magnets) fixed on the rotor core which is surface-mOunted magnets retained by a carbon-fiber bandage. Redundant windings, resistant to fault propagation have accounted. Besides, an axial water-jacket housing without end-cap cooling has involved. All performed characteristic performances of the correlated ARWM will verify by comparison through 2-D and 3-D FEA results. In this paper, design process has dealing with determination of various kinds of losses such as electromagnetic and mechanical losses. In terms of both classified losses, copper, stator back iron, stator tooth, PM, rotor back iron, air-friction and sleeve losses were calculated. The 3-D end-winding effects were included in the modeled ARWM by the authors.展开更多
In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze ...In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.展开更多
The analytical solution of Helmholtz equation for magnetic vector potential in anisotropic and nonhomogeneous region is presented. The solution is built of a combination of both Bessel and power functions. There are d...The analytical solution of Helmholtz equation for magnetic vector potential in anisotropic and nonhomogeneous region is presented. The solution is built of a combination of both Bessel and power functions. There are developed two examples that proof the accuracy of the proposed analytical solution. First example is showing the electromagnetic field analysis in slot of ferromagnetic rotor of electrical induction machine. The second example approaches electromagnetic field wave in resonator of the form of rectangular cavity The analytical solution presented is treated as an exact one and is being compared with the numerical solution, e.g., given by finite element method. The analytical solution can be used as a benchmark test for numerical algorithms,展开更多
基金The National Basic Research Program of China(973Program) (No2002CB312102)the National Natural ScienceFoundation of China (No60675047)
文摘The damper is capable of providing a continuously variable dampering force/torque in response to a magnetic field. It consists of an upside cap and an underside cap with a rotor located between them, the magneto-rheological (MR) fluid is filled into the gaps between the rotor and the caps. When the viscosity of the MR fluid increases under the influence of the magnetic field, the movement of the rotor will be resisted. The output torque is made up of the torque caused by the magnetic field, the torque caused by the plastic viscosity of the MR fluid, and the torque caused by the coulomb friction. The viscous torque can be calculated by a simple method and the frictional torque can be obtained by experiments. The torque dependent on the magnetic field is obtained by electromagnetic finite dement analysis. Experiments are done on the damper prototype and the validity of the design is verified.
基金Projects(50374081 60634020) supported by the National Natural Science Foundation of China
文摘Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to compute iteratively the freeze profile until the thickness variable reached the terminating requirement. The calculated 2D heat dissipation from the cell surfaces was converted into the overall 3D heat loss. The potential drop of the system, freeze profile and heat balance were analyzed to evaluate their variation with technical parameters when designing the 150 kA conventional cell based drained cell. The simulation results show that the retrofitted drained cell is able to keep thermal balance under the conditions that the current is 190 kA, the anodic current density is 0.96 A/cm2, the anode-cathode distance is 2.5 cm, the alumina cover is 16 cm thick with a thermal conductivity of 0.20 W/(m·℃ ) and the electrolysis temperature is 946 ℃ .
文摘In this paper, a composite grid method (CGM) for finite element (FE) analysisof an electromagnetic field with strong local interest is proposed. The method is based on theregular finite element method in conjunction with three basic steps, i.e. global analysis, localanalysis, and modified global analysis. In the first two steps, a coarse finite element mesh is usedto analyze the global model to obtain the nodal potentials which are subsequently used asartificial boundary conditions for local regions of interest. These local regions with theprescribed boundary conditions are then analyzed with refined meshes to obtain more accuratepotential and density distribution In the third step, a modified global analysis is performed toobtain more improved solution for potential and density distribution. And iteratively, successivelyimproved solutions can be obtained until the desired accuracy is achieved. Various numericalexperiments show that CCM yields accurate solutions with significant savings in computing timecompared with the regular finite element method.
基金Supported by Natural Science Foundation of China(No.50677042).
文摘Conventional permanent magnet synchronous machine (PMSM) has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets (PMs) are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current i_d, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.
基金Supported by the Fundamental Research Funds for the Central Universities under Grants Nos. HEUCF101706 and HEUCF111705
文摘A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.
文摘A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 rpm, short-duty, sinusoidal drive, low cogging, high efficiency at peak torque, and etc. for an ARWM (aerospace retraction wheel motor). In construction, the PMs (permanent magnets) fixed on the rotor core which is surface-mOunted magnets retained by a carbon-fiber bandage. Redundant windings, resistant to fault propagation have accounted. Besides, an axial water-jacket housing without end-cap cooling has involved. All performed characteristic performances of the correlated ARWM will verify by comparison through 2-D and 3-D FEA results. In this paper, design process has dealing with determination of various kinds of losses such as electromagnetic and mechanical losses. In terms of both classified losses, copper, stator back iron, stator tooth, PM, rotor back iron, air-friction and sleeve losses were calculated. The 3-D end-winding effects were included in the modeled ARWM by the authors.
文摘In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.
文摘The analytical solution of Helmholtz equation for magnetic vector potential in anisotropic and nonhomogeneous region is presented. The solution is built of a combination of both Bessel and power functions. There are developed two examples that proof the accuracy of the proposed analytical solution. First example is showing the electromagnetic field analysis in slot of ferromagnetic rotor of electrical induction machine. The second example approaches electromagnetic field wave in resonator of the form of rectangular cavity The analytical solution presented is treated as an exact one and is being compared with the numerical solution, e.g., given by finite element method. The analytical solution can be used as a benchmark test for numerical algorithms,