The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outc...The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.展开更多
In this paper we described our study of the behaviors of field emitters driven by square-wave voltages. We observed phenomena under pulsed voltages that generally do not manifest themselves under direct-current voltag...In this paper we described our study of the behaviors of field emitters driven by square-wave voltages. We observed phenomena under pulsed voltages that generally do not manifest themselves under direct-current voltages. We interpreted these phenomena with the cathode and anode combined treated as equivalent to a resistor and a condenser in series connection. First,because of the delay caused by the charging process of the condenser, the waveform of the voltage across the cathode-anode gap was remarkably distorted. Second, the resistor led to considerable attenuation in field emission, which was clearly observable within each pulse and became more dramatic with increasing repetition frequency of the pulses. Furthermore, the field emission currents under direct-current voltages were lower than those under pulsed voltages. This disparity is attributed to rising resistance in the circuit with rising temperature. We also discussed the restrictions that the waveform distortion and current attenuation could impose on potential field emitter applications.展开更多
文摘The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.
基金supported by the Ministry of Science and Technology of China(Grant No.2013CB933604)
文摘In this paper we described our study of the behaviors of field emitters driven by square-wave voltages. We observed phenomena under pulsed voltages that generally do not manifest themselves under direct-current voltages. We interpreted these phenomena with the cathode and anode combined treated as equivalent to a resistor and a condenser in series connection. First,because of the delay caused by the charging process of the condenser, the waveform of the voltage across the cathode-anode gap was remarkably distorted. Second, the resistor led to considerable attenuation in field emission, which was clearly observable within each pulse and became more dramatic with increasing repetition frequency of the pulses. Furthermore, the field emission currents under direct-current voltages were lower than those under pulsed voltages. This disparity is attributed to rising resistance in the circuit with rising temperature. We also discussed the restrictions that the waveform distortion and current attenuation could impose on potential field emitter applications.