通过分析隔离式断路器与电子互感器一体化现有的两种方案所存在的技术问题,并结合现有两种方案的技术优点,提出了一种新型的组合方案,为隔离式断路器与电子互感器一体化设计提供了新的思路,以高度集成化结构方案进行仿真,为工程设计提...通过分析隔离式断路器与电子互感器一体化现有的两种方案所存在的技术问题,并结合现有两种方案的技术优点,提出了一种新型的组合方案,为隔离式断路器与电子互感器一体化设计提供了新的思路,以高度集成化结构方案进行仿真,为工程设计提供了技术参考。结合现有110 k V电子互感器产品与隔离式断路器组合为例分析计算,为该新型组合方案的可行性提供了技术支持。主要研究了新型组合方案中高度集成化原则下电子互感器与隔离式断路器相互之间绝缘的影响。利用ANSYS有限元分析法,分别对隔离断路器合闸状态与分闸状态下电子互感器与隔离断路器各自独立的内外电场值及电场线分布趋势进行了仿真分析,从而得出在无源电子互感器与隔离断路器高度组合的条件下,相互的电场影响极小,不影响各自的正常运行,易于实现一体化。展开更多
We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide subst...We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtC16 solution. The influence of the concentration of the platinum- containing acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.展开更多
We present a novel method for designing transformation optical devices based on electrostatics.An arbi-trary transformation of electrostatic field can lead to a new refractive index distribution,where wave-fronts and ...We present a novel method for designing transformation optical devices based on electrostatics.An arbi-trary transformation of electrostatic field can lead to a new refractive index distribution,where wave-fronts and energy flux lines correspond to equipotential surfaces and electrostatic flux lines,respectively.Owing to scalar wave propagating exactly following an eikonal equation,wave optics and geometric optics share the same solutions in the devices.The method is utilized to design multipole lenses derived from multipoles in electrostatics.The source and drain in optics are considered as corre-sponding to positive charge and negative charge in the static field.By defining winding numbers in vir-tual and physical spaces,we explain the reason for some multipole lenses with illusion effects.Besides,we introduce an equipotential absorber to replace the drain to correspond to a negative charge with a grounded conductor.Therefore,it is a very general platform to design intriguing devices based on the combination of electrostatics and transformation optics.展开更多
文摘通过分析隔离式断路器与电子互感器一体化现有的两种方案所存在的技术问题,并结合现有两种方案的技术优点,提出了一种新型的组合方案,为隔离式断路器与电子互感器一体化设计提供了新的思路,以高度集成化结构方案进行仿真,为工程设计提供了技术参考。结合现有110 k V电子互感器产品与隔离式断路器组合为例分析计算,为该新型组合方案的可行性提供了技术支持。主要研究了新型组合方案中高度集成化原则下电子互感器与隔离式断路器相互之间绝缘的影响。利用ANSYS有限元分析法,分别对隔离断路器合闸状态与分闸状态下电子互感器与隔离断路器各自独立的内外电场值及电场线分布趋势进行了仿真分析,从而得出在无源电子互感器与隔离断路器高度组合的条件下,相互的电场影响极小,不影响各自的正常运行,易于实现一体化。
文摘We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtC16 solution. The influence of the concentration of the platinum- containing acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.
基金the National Natural Science Foundation of China(92050102)the National Key Research and Development Program of China(2020YFA0710100)+1 种基金the National Natural Science Foundation of China(11874311)the FundamentalResearch Funds for the Central Universities(20720200074 and20720190049)。
文摘We present a novel method for designing transformation optical devices based on electrostatics.An arbi-trary transformation of electrostatic field can lead to a new refractive index distribution,where wave-fronts and energy flux lines correspond to equipotential surfaces and electrostatic flux lines,respectively.Owing to scalar wave propagating exactly following an eikonal equation,wave optics and geometric optics share the same solutions in the devices.The method is utilized to design multipole lenses derived from multipoles in electrostatics.The source and drain in optics are considered as corre-sponding to positive charge and negative charge in the static field.By defining winding numbers in vir-tual and physical spaces,we explain the reason for some multipole lenses with illusion effects.Besides,we introduce an equipotential absorber to replace the drain to correspond to a negative charge with a grounded conductor.Therefore,it is a very general platform to design intriguing devices based on the combination of electrostatics and transformation optics.