The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a...The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a large number of buyers who are using shopbots. This paper studies the characteristic of decreasing energy with time in a continuous model of a Hopfield neural network that is the decreasing of errors in the network with respect to time. The characteristic shows that it is possible to use Hopfield neural network to get the main factor of dynamic pricing; the least variable cost, from production function principles. The least variable cost is obtained by reducing or increasing the input combination factors, and then making the comparison of the network output with the desired output, where the difference between the network output and desired output will be decreasing in the same manner as in the Hopfield neural network energy. Hopfield neural network will simplify the rapid change of prices in e-commerce during transaction that depends on the demand quantity for demand sensitive model of pricing.展开更多
The electronic states of molecules made of electropositive and electronegative components result from the interference between the covalent configurations and the ionic configurations. This work shows complex aspects ...The electronic states of molecules made of electropositive and electronegative components result from the interference between the covalent configurations and the ionic configurations. This work shows complex aspects of these ionic-covalent couplings in small molecules such as Li2H, Li2F, and Li4F. The extension of this type of analysis to the adsorption of the electrophilic molecules on the metal clusters or on the metal surfaces is supposed to lead to a radically new interpretation of the observed physical and chemical properties.展开更多
Potential electric and gravitational fields do not change steady quantized states of electrons in chemical bonds, microscopic clusters of charges and macroscopic superconducting rings. There are no theoretical grounds...Potential electric and gravitational fields do not change steady quantized states of electrons in chemical bonds, microscopic clusters of charges and macroscopic superconducting rings. There are no theoretical grounds to create Squid-type instruments to measure electric and gravitational fields with quantum accuracy basing on the Bohr-Sommerfeld quantization of charged particles. Squid-verified spatial flatness for superfluid electrons corresponds to the material space paradigm for reality.展开更多
The correlation between crystal facets and electronic configurations of perovskite is closely related to the intrinsic activity for water splitting.Herein,we proposed a unique molten-salt method(MSM)to manipulate the ...The correlation between crystal facets and electronic configurations of perovskite is closely related to the intrinsic activity for water splitting.Herein,we proposed a unique molten-salt method(MSM)to manipulate the electronic properties of LaCoO_(3) by fine-tuning its crystal facet and atomic doping.LaCoO_(3) samples with oriented(110)(LCO(110))and(111)(LCO(111))facets were motivated by a capping agent(Sr^(2+)).Compared with the LCO(111)plane,the LCO(110)and Sr-doped LCO(111)(LSCO(111))planes possessed higher O 2p positions,stronger Co 3d-O 2p covalencies,and higher Co spin states by inducing CoO_(6) distortion,thus leading to superior oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performances.Specifically,the overpotentials at 10 mA cm^(−2) were 299,322,and 289 mV for LCO(110),LCO(111),and LSCO(111),respectively.In addition,the(110)crystal facet and Sr substitution bestowed enhanced stability on LaCoO_(3) due to the strengthened Co-O bonding.The present work enlightens new avenues of regulating electronic properties by crystal facet engineering and atom doping and provides a valuable reference for the electron structure-electrocatalytic activity connection for OER and HER.展开更多
文摘The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a large number of buyers who are using shopbots. This paper studies the characteristic of decreasing energy with time in a continuous model of a Hopfield neural network that is the decreasing of errors in the network with respect to time. The characteristic shows that it is possible to use Hopfield neural network to get the main factor of dynamic pricing; the least variable cost, from production function principles. The least variable cost is obtained by reducing or increasing the input combination factors, and then making the comparison of the network output with the desired output, where the difference between the network output and desired output will be decreasing in the same manner as in the Hopfield neural network energy. Hopfield neural network will simplify the rapid change of prices in e-commerce during transaction that depends on the demand quantity for demand sensitive model of pricing.
文摘The electronic states of molecules made of electropositive and electronegative components result from the interference between the covalent configurations and the ionic configurations. This work shows complex aspects of these ionic-covalent couplings in small molecules such as Li2H, Li2F, and Li4F. The extension of this type of analysis to the adsorption of the electrophilic molecules on the metal clusters or on the metal surfaces is supposed to lead to a radically new interpretation of the observed physical and chemical properties.
文摘Potential electric and gravitational fields do not change steady quantized states of electrons in chemical bonds, microscopic clusters of charges and macroscopic superconducting rings. There are no theoretical grounds to create Squid-type instruments to measure electric and gravitational fields with quantum accuracy basing on the Bohr-Sommerfeld quantization of charged particles. Squid-verified spatial flatness for superfluid electrons corresponds to the material space paradigm for reality.
基金supported by the National Natural Science Foundation of China(52174283)。
文摘The correlation between crystal facets and electronic configurations of perovskite is closely related to the intrinsic activity for water splitting.Herein,we proposed a unique molten-salt method(MSM)to manipulate the electronic properties of LaCoO_(3) by fine-tuning its crystal facet and atomic doping.LaCoO_(3) samples with oriented(110)(LCO(110))and(111)(LCO(111))facets were motivated by a capping agent(Sr^(2+)).Compared with the LCO(111)plane,the LCO(110)and Sr-doped LCO(111)(LSCO(111))planes possessed higher O 2p positions,stronger Co 3d-O 2p covalencies,and higher Co spin states by inducing CoO_(6) distortion,thus leading to superior oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performances.Specifically,the overpotentials at 10 mA cm^(−2) were 299,322,and 289 mV for LCO(110),LCO(111),and LSCO(111),respectively.In addition,the(110)crystal facet and Sr substitution bestowed enhanced stability on LaCoO_(3) due to the strengthened Co-O bonding.The present work enlightens new avenues of regulating electronic properties by crystal facet engineering and atom doping and provides a valuable reference for the electron structure-electrocatalytic activity connection for OER and HER.