The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanopa...The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanoparticles were fabricated by a facile method. Bi-O-Si bonds were formed between Bi and SiO2, and acted as a transportation channel for hot electrons. The SiO2@Bi microspheres exhibited an enhanced plasmon-mediated photocatalytic activity for the removal of NO in air under 280 nm light irradiation, as a result of the enlarged specific surface areas and the promotion of electron transfer via the Bi-O-Si bonds. The reaction mechanism of photocatalytic oxidation of NO by SiO2@Bi was revealed with electron spin resonance and in situ diffuse reflectance infrared Fourier transform spectroscopy experiments, and involved the chain reaction NO -> NO2 -> NO3- with center dot OH and center dot O-2(-) radicals as the main reactive species. The present work could provide new insights into the in-depth mechanistic understanding of Bi plasmonic photocatalysis and the design of high-performance Bi-based photocatalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial ...Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial management strategy using a boron chloride subphthalocyanine(Cl_(6)SubPc)/fullerene electron-transport layer,which not only passivates the interfacial defects in the perovskite,but also suppresses halide diffusion as evidenced by multiple techniques,including visual element mapping by electron energy loss spectroscopy.As a result,we obtain inverted PSCs with an efficiency of 22.0%(21.3%certified),shelf life of 7000 h,T_(80) of 816 h under damp heat stress(compared to less than 20 h without Cl_(6)SubPc),and initial performance retention of 98%after 2000 h at 80℃in inert environment,90%after 2034 h of illumination and maximum power point tracking in ambient for encapsulated devices and 95%after 1272 h outdoor testing ISOS-O-1.Our strategy and results pave a new way to move PSCs forward to their potential commercialization solidly.展开更多
Electrocatalytic reduction of CO_(2)is one of the most attractive approaches for converting CO_(2)into valuable chemical feedstocks and fuels.This work reports a catalyst comprising graphdiyne-decorated bismuth subcar...Electrocatalytic reduction of CO_(2)is one of the most attractive approaches for converting CO_(2)into valuable chemical feedstocks and fuels.This work reports a catalyst comprising graphdiyne-decorated bismuth subcarbonate(denoted as BOC@GDY)for efficient electroreduction of CO_(2)to formate.The BOC@GDY shows a stable current density of 200 mA cm^(-2)at–1.1 V in a flow cell configuration,with a faradaic efficiency of 93.5%for formate.Experimental results show that the synergistic effect in BOC@GDY is beneficial for the CO_(2)adsorption affinity,the reaction kinetics and the selectivity for formate.In addition,in-situ X-ray absorption and Raman spectroscopy indicate that the electron-rich GDY could facilitate the reduction from Bi(Ⅲ)to Bi(0),thus leading to more active sites.We also demonstrate that the promoting effect of GDY in CO_(2)electroreduction can be further extended to other metal catalysts.To the best of our knowledge,such general promoting functions of GDY for CO_(2)electroreduction have not been documented thus far.展开更多
基金supported by the National Natural Science Foundation of China(21501016,51478070,21406022,21676037)the National Key R&D Project(2016YFC0204702)+4 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2016jcyjA 0481,cstc2015jcyjA 0061)the Science and Technology Project of Chongqing Education Commission(KJ1600625,KJ1500637)the Application and Basic Science Project of Ministry of Transport of People's Republic of China(2015319814100)the Innovative Research Project from CTBU(yjscxx2016-060-36)~~
文摘The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanoparticles were fabricated by a facile method. Bi-O-Si bonds were formed between Bi and SiO2, and acted as a transportation channel for hot electrons. The SiO2@Bi microspheres exhibited an enhanced plasmon-mediated photocatalytic activity for the removal of NO in air under 280 nm light irradiation, as a result of the enlarged specific surface areas and the promotion of electron transfer via the Bi-O-Si bonds. The reaction mechanism of photocatalytic oxidation of NO by SiO2@Bi was revealed with electron spin resonance and in situ diffuse reflectance infrared Fourier transform spectroscopy experiments, and involved the chain reaction NO -> NO2 -> NO3- with center dot OH and center dot O-2(-) radicals as the main reactive species. The present work could provide new insights into the in-depth mechanistic understanding of Bi plasmonic photocatalysis and the design of high-performance Bi-based photocatalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
基金supported by the National Natural Science Foundation of China (61775091, and U2001216)the Shenzhen Key Laboratory Project (ZDSYS201602261933302)+2 种基金Natural Science Foundation of Shenzhen Innovation Committee (JCYJ20180504165851864)the support of Research Grants Council Collaborative Research Fund (RGC- CRF) grant C5037-18GSeed Funding for Strategic Interdisciplinary Research Scheme of the University of Hong Kong and Shenzhen Science and Technology Commission Projects (JCYJ20170818141216288)
文摘Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial management strategy using a boron chloride subphthalocyanine(Cl_(6)SubPc)/fullerene electron-transport layer,which not only passivates the interfacial defects in the perovskite,but also suppresses halide diffusion as evidenced by multiple techniques,including visual element mapping by electron energy loss spectroscopy.As a result,we obtain inverted PSCs with an efficiency of 22.0%(21.3%certified),shelf life of 7000 h,T_(80) of 816 h under damp heat stress(compared to less than 20 h without Cl_(6)SubPc),and initial performance retention of 98%after 2000 h at 80℃in inert environment,90%after 2034 h of illumination and maximum power point tracking in ambient for encapsulated devices and 95%after 1272 h outdoor testing ISOS-O-1.Our strategy and results pave a new way to move PSCs forward to their potential commercialization solidly.
基金the National Key R&D Program of China(2017YFA0700104)the National Natural Science Foundation of China(21790052,21805207,and 21931007)+1 种基金111 Project of China(D17003)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ129)。
文摘Electrocatalytic reduction of CO_(2)is one of the most attractive approaches for converting CO_(2)into valuable chemical feedstocks and fuels.This work reports a catalyst comprising graphdiyne-decorated bismuth subcarbonate(denoted as BOC@GDY)for efficient electroreduction of CO_(2)to formate.The BOC@GDY shows a stable current density of 200 mA cm^(-2)at–1.1 V in a flow cell configuration,with a faradaic efficiency of 93.5%for formate.Experimental results show that the synergistic effect in BOC@GDY is beneficial for the CO_(2)adsorption affinity,the reaction kinetics and the selectivity for formate.In addition,in-situ X-ray absorption and Raman spectroscopy indicate that the electron-rich GDY could facilitate the reduction from Bi(Ⅲ)to Bi(0),thus leading to more active sites.We also demonstrate that the promoting effect of GDY in CO_(2)electroreduction can be further extended to other metal catalysts.To the best of our knowledge,such general promoting functions of GDY for CO_(2)electroreduction have not been documented thus far.