近些年来,利用行政管理和临床保健数据库等常规收集的卫生数据开展真实世界比较效果与安全性的研究越来越多地影响药品监管、报销和其他医疗保健决策。电子健康记录(Electronic Health Records,EHR),尤其是电子病历数据中的非结构化数...近些年来,利用行政管理和临床保健数据库等常规收集的卫生数据开展真实世界比较效果与安全性的研究越来越多地影响药品监管、报销和其他医疗保健决策。电子健康记录(Electronic Health Records,EHR),尤其是电子病历数据中的非结构化数据蕴含大量症状、体征、诊断相关数据,结合高效可行的临床真实世界数据采集模式,将其整理为可供分析的结构化数据,可以更好地利用这些信息开展研究。目前已发表的多个报告规范详细说明了关于如何规范报告使用常规收集卫生数据开展观察性研究。然而,现有报告规范未对电子医疗记录、登记数据或其他医疗保健数据源中所包含的结构化和非结构化信息加以区分。如何更加透明、规范地报告,即将非结构化文本提取,整理成为可以开展比较效果研究和安全性研究分析的结构化字段,对于此类因果推断研究、结果解释有重要意义。鉴于此,哈佛医学院Shirley V.Wang教授带领的研究团队提出并制定《使用非结构化电子健康数据开展真实世界比较效果和安全性研究的报告规范》。本文对基于非结构化EHR开展真实世界比较效果和安全性研究过程中涉及的专业术语和相关技术进行简单归纳,着重介绍现已发表的报告规范中对于非结构化文本处理,如使用自然语言处理或机器学习方法时需重点报告的核心要点,以期为研究人员今后更好地开展和报告此类研究提供参考。展开更多
文摘近些年来,利用行政管理和临床保健数据库等常规收集的卫生数据开展真实世界比较效果与安全性的研究越来越多地影响药品监管、报销和其他医疗保健决策。电子健康记录(Electronic Health Records,EHR),尤其是电子病历数据中的非结构化数据蕴含大量症状、体征、诊断相关数据,结合高效可行的临床真实世界数据采集模式,将其整理为可供分析的结构化数据,可以更好地利用这些信息开展研究。目前已发表的多个报告规范详细说明了关于如何规范报告使用常规收集卫生数据开展观察性研究。然而,现有报告规范未对电子医疗记录、登记数据或其他医疗保健数据源中所包含的结构化和非结构化信息加以区分。如何更加透明、规范地报告,即将非结构化文本提取,整理成为可以开展比较效果研究和安全性研究分析的结构化字段,对于此类因果推断研究、结果解释有重要意义。鉴于此,哈佛医学院Shirley V.Wang教授带领的研究团队提出并制定《使用非结构化电子健康数据开展真实世界比较效果和安全性研究的报告规范》。本文对基于非结构化EHR开展真实世界比较效果和安全性研究过程中涉及的专业术语和相关技术进行简单归纳,着重介绍现已发表的报告规范中对于非结构化文本处理,如使用自然语言处理或机器学习方法时需重点报告的核心要点,以期为研究人员今后更好地开展和报告此类研究提供参考。