Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused incr...Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.展开更多
The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbo...The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H_2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process.展开更多
Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to f...Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to fi'om water and the other oxygen atom is to from aldehydes/ketones. The oxidized flavin is regenerated after water is formed. The chemical biomimetic system was established according to the preliminary mechanism of alkanesulfonate monooxygenase and the cyclic mechanism was proposed for the formation ofaldehydes/ketones. Two oxygen atoms from the reduced flavin to form C(4a)-peroxy-flavin. The oxygen atom connected with C(4a) abstracts one electron from the neighbouring oxygen to transfer one oxygen atom to C1 ofalkanesulfonates and abstracts one hydrogen from C1 ofalkanesulfonates to break C 1-H bond. Hydroxy-flavin was produced by the above cyclic mechanism. Alkansulfonate monooxygenase SsuD does not directly involve in the reaction. It only supplies some comfortable environment to facilitate the target reactiorL展开更多
The purpose of this study was to explore influence of abiotic factors, such as high temperature, water deficiency and high solar radiation on the photomembrane of grapevine leaves. Grapevine leaves were collected from...The purpose of this study was to explore influence of abiotic factors, such as high temperature, water deficiency and high solar radiation on the photomembrane of grapevine leaves. Grapevine leaves were collected from variety Rkatsiteli (Vitis vinifera) and placed at a temperature of +45 ℃ and +55 ℃ for 5 rain, respectively. The relative volume of water in leaves was gradually reduced to 50%, and then leaves were irradiated with 6,000 pmol/m2.s of white light. Changes provoked by stressful abiotie factors were determined using rapid and delayed chlorophyll fluorescence methods. It was shown that value of variable component of chlorophyll fluorescence (Fv), intensity of electron transport between the photosystems (ETR), intensity of expended electrons in carboxylation (ETRn) and oxygenation (ETRp) and index of non-photochemical quenching (NPQ), allow studying molecular mechanisms of the impact of abiotic factors and the resulting damage degree. Based on delayed and rapid fluorescence data, it was demonstrated that temperature of +45 ℃ adversely affects oxygen production system and CO2 assimilation mechanisms, while at +55 ℃, the ETR decreases. Reduction of relative water volume in leaves up to 50%-55% leads to sharp reduction in ETR and inhibition of photosynthesis. In case of irradiation of leaves with high-intensity light of 6,000 μmol/m2.s, NPQ of light falling on a leaf increases, thus protecting photosynthesis apparatus from damage.展开更多
Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellen...Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellent electrochemical properties. Extracellular electron transfer pathways at the cell/GO interface were systematically investigated, suggesting both direct electron transfer and electron mediators are involved in the GO reduction.展开更多
Anatase titanium dioxide nanowire arrays were prepared by hydrothermally oxidizing titanium foils in aqueous alkali and transferred onto fluorinated tin oxide(FTO)glass for use as the photoanodes of front side illumin...Anatase titanium dioxide nanowire arrays were prepared by hydrothermally oxidizing titanium foils in aqueous alkali and transferred onto fluorinated tin oxide(FTO)glass for use as the photoanodes of front side illuminated dye-sensitized solar cells(DSCs).Electrochemical impedance spectroscopy(EIS)measurement was applied to compare the electron transport and recombination properties of DSCs using TiO2nanowire films and TiO2nanoparticle films as photoanodes.It was found that the nanowire array films possess smaller electron transport resistance(Rt)and larger electron diffusion length(Le)in the photoanodes,suggesting that the nanowire arrays can enhance the electron transport rate and have a potential to improve the charge collection efficiency of DSCs.展开更多
文摘Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.
基金partly supported by the National Natural Science Foundation of China(41630857)the National Basic Research Program of China(2016YFD0200306)
文摘The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H_2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process.
文摘Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to fi'om water and the other oxygen atom is to from aldehydes/ketones. The oxidized flavin is regenerated after water is formed. The chemical biomimetic system was established according to the preliminary mechanism of alkanesulfonate monooxygenase and the cyclic mechanism was proposed for the formation ofaldehydes/ketones. Two oxygen atoms from the reduced flavin to form C(4a)-peroxy-flavin. The oxygen atom connected with C(4a) abstracts one electron from the neighbouring oxygen to transfer one oxygen atom to C1 ofalkanesulfonates and abstracts one hydrogen from C1 ofalkanesulfonates to break C 1-H bond. Hydroxy-flavin was produced by the above cyclic mechanism. Alkansulfonate monooxygenase SsuD does not directly involve in the reaction. It only supplies some comfortable environment to facilitate the target reactiorL
文摘The purpose of this study was to explore influence of abiotic factors, such as high temperature, water deficiency and high solar radiation on the photomembrane of grapevine leaves. Grapevine leaves were collected from variety Rkatsiteli (Vitis vinifera) and placed at a temperature of +45 ℃ and +55 ℃ for 5 rain, respectively. The relative volume of water in leaves was gradually reduced to 50%, and then leaves were irradiated with 6,000 pmol/m2.s of white light. Changes provoked by stressful abiotie factors were determined using rapid and delayed chlorophyll fluorescence methods. It was shown that value of variable component of chlorophyll fluorescence (Fv), intensity of electron transport between the photosystems (ETR), intensity of expended electrons in carboxylation (ETRn) and oxygenation (ETRp) and index of non-photochemical quenching (NPQ), allow studying molecular mechanisms of the impact of abiotic factors and the resulting damage degree. Based on delayed and rapid fluorescence data, it was demonstrated that temperature of +45 ℃ adversely affects oxygen production system and CO2 assimilation mechanisms, while at +55 ℃, the ETR decreases. Reduction of relative water volume in leaves up to 50%-55% leads to sharp reduction in ETR and inhibition of photosynthesis. In case of irradiation of leaves with high-intensity light of 6,000 μmol/m2.s, NPQ of light falling on a leaf increases, thus protecting photosynthesis apparatus from damage.
基金Y. L. acknowledges the financial support of this work in part by national science foundation (NSF) (No. CBET 1034222) and faculty research funds granted by the University of California, Santa Cruz. XPS was performed at the Center for Nanoscale Systems at Harvard University, which is supported by the NSF (No. ECS-0335765). We thank H. Lin of Harvard University for technical assistance. Work at Lawrence Livermore National Laboratory was conducted under Contract No. DE-AC52-07NA27344.
文摘Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellent electrochemical properties. Extracellular electron transfer pathways at the cell/GO interface were systematically investigated, suggesting both direct electron transfer and electron mediators are involved in the GO reduction.
基金supported by the National High Technology Research and Development Program of China(Grant Nos.2006AA03Z218 and 2011AA050522)the Project of International Cooperation of the Ministry of Science and Technology of China(Grant No.2011DFA50530)the Sanjiangyuan Scientific Program of Qinghai Science&Technology Department(Grant No.2010-N-S03)
文摘Anatase titanium dioxide nanowire arrays were prepared by hydrothermally oxidizing titanium foils in aqueous alkali and transferred onto fluorinated tin oxide(FTO)glass for use as the photoanodes of front side illuminated dye-sensitized solar cells(DSCs).Electrochemical impedance spectroscopy(EIS)measurement was applied to compare the electron transport and recombination properties of DSCs using TiO2nanowire films and TiO2nanoparticle films as photoanodes.It was found that the nanowire array films possess smaller electron transport resistance(Rt)and larger electron diffusion length(Le)in the photoanodes,suggesting that the nanowire arrays can enhance the electron transport rate and have a potential to improve the charge collection efficiency of DSCs.