The authors found the effect of magnetic field on the ionization of atoms and ions and shown that the magnetic field affected the rate of ionization and electron emission at angle of 60°, 120°, 240° and...The authors found the effect of magnetic field on the ionization of atoms and ions and shown that the magnetic field affected the rate of ionization and electron emission at angle of 60°, 120°, 240° and 300°. It is shown that the calculation must take into account the ionization potential of the magnetic field.展开更多
The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is...The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion. Comparing with hue-intensity-saturation (HIS), discrete wavelet transform (DWT), wavelet-based sharpening and wavelet-a trous transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in any aspect ratio between the pixels of MRI and PET images.展开更多
A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray ...A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.展开更多
Emerging quantum dots(QDs)based light-emitting field-effect transistors(QLEFETs)could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost...Emerging quantum dots(QDs)based light-emitting field-effect transistors(QLEFETs)could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost.Considerable efforts have been devoted to designing device structure and to understanding the underlying physics,yet the overall performance of QLEFETs remains low due to the charge/exciton loss at the interface and the large band offset of a QD layer with respect to the adjacent carrier transport layers.Here,we report highly efficient QLEFETs with an external quantum efficiency(EQE)of over 20%by employing a dielectric-QDs-dielectric(DQD)sandwich structure.Such DQD structure is used to control the carrier behavior by modulating energy band alignment,thus shifting the exciton recombination zone into the emissive layer.Also,enhanced radiative recombination is achieved by preventing the exciton loss due to presence of surface traps and the luminescence quenching induced by interfacial charge transfer.The DQD sandwiched design presents a new concept to improve the electroluminescence performance of QLEFETs,which can be transferred to other material systems and hence can facilitate exploitation of QDs in a new type of optoelectronic devices.展开更多
We review recent studies by different experimental means of ultrathin films,exhibiting thickness-driven spin reorientation transitions(SRTs).The stage is set by determining,via phenomenological thermodynamic descripti...We review recent studies by different experimental means of ultrathin films,exhibiting thickness-driven spin reorientation transitions(SRTs).The stage is set by determining,via phenomenological thermodynamic description,of the relevant phase diagrams for the possible types of SRT with and without applied magnetic field.Suitable representation may be chosen such that best use is made of the linear character(under thickness variation) of the system's path in anisotropy space.The latter involves higher-order bulk and surface anisotropies in a substantial way.We examine sensitive experimental techniques for the detection and quantification of SRTs,such as hysteresis measurements with magneto-optical Kerr effect(MOKE),micromagnetic studies utilizing scanning electron microscopy with polarization analysis(SEMPA),photoemission electron microscopy(PEEM) and spin-polarized low-energy electron microscopy(SPLEEM) as well as ac magnetic susceptibility measurements via MOKE.Key issues are conclusively discussed including the identification of reliable experimental fingerprints about whether a given SRT proceeds via a phase of coexistence or via a cone(canted) phase.We demonstrate how the application of the general theoretical ideas to carefully designed measurements leads to the determination of the most important material parameters in any ultrathin-film SRT,namely,the surface(interface) magnetic anisotropy constants.The review concludes by our personal outline for future promising work on SRTs.展开更多
文摘The authors found the effect of magnetic field on the ionization of atoms and ions and shown that the magnetic field affected the rate of ionization and electron emission at angle of 60°, 120°, 240° and 300°. It is shown that the calculation must take into account the ionization potential of the magnetic field.
基金Project (No. TMU 85-05-33) supported in part by the Iran Telecommunication Research Center (ITRC)
文摘The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion. Comparing with hue-intensity-saturation (HIS), discrete wavelet transform (DWT), wavelet-based sharpening and wavelet-a trous transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in any aspect ratio between the pixels of MRI and PET images.
基金Project(Y4110230)supported by Natural Science Foundation of Zhejiang Province,ChinaProject(51204146,51101140)supported by the National Natural Science Foundation of ChinaProject(2012M521197)supported by Postdoctoral Science Foundation of China
文摘A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.
基金support from the National Natural Science Foundation of China(62174104,61735004,and 12174086)the National Key Research and Development Program of China(2016YFB0401702)the Shanghai Science and Technology Committee(19010500600)。
文摘Emerging quantum dots(QDs)based light-emitting field-effect transistors(QLEFETs)could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost.Considerable efforts have been devoted to designing device structure and to understanding the underlying physics,yet the overall performance of QLEFETs remains low due to the charge/exciton loss at the interface and the large band offset of a QD layer with respect to the adjacent carrier transport layers.Here,we report highly efficient QLEFETs with an external quantum efficiency(EQE)of over 20%by employing a dielectric-QDs-dielectric(DQD)sandwich structure.Such DQD structure is used to control the carrier behavior by modulating energy band alignment,thus shifting the exciton recombination zone into the emissive layer.Also,enhanced radiative recombination is achieved by preventing the exciton loss due to presence of surface traps and the luminescence quenching induced by interfacial charge transfer.The DQD sandwiched design presents a new concept to improve the electroluminescence performance of QLEFETs,which can be transferred to other material systems and hence can facilitate exploitation of QDs in a new type of optoelectronic devices.
基金supported by the State Key Programme for Basic Research of China (Grant No. 2010CB923401)National Natural Science Foundation of China (Grant Nos. 10834001,10974087 and 11023002)Natural Science Foundation of Jiangsu (Grant No. BK2012300)
文摘We review recent studies by different experimental means of ultrathin films,exhibiting thickness-driven spin reorientation transitions(SRTs).The stage is set by determining,via phenomenological thermodynamic description,of the relevant phase diagrams for the possible types of SRT with and without applied magnetic field.Suitable representation may be chosen such that best use is made of the linear character(under thickness variation) of the system's path in anisotropy space.The latter involves higher-order bulk and surface anisotropies in a substantial way.We examine sensitive experimental techniques for the detection and quantification of SRTs,such as hysteresis measurements with magneto-optical Kerr effect(MOKE),micromagnetic studies utilizing scanning electron microscopy with polarization analysis(SEMPA),photoemission electron microscopy(PEEM) and spin-polarized low-energy electron microscopy(SPLEEM) as well as ac magnetic susceptibility measurements via MOKE.Key issues are conclusively discussed including the identification of reliable experimental fingerprints about whether a given SRT proceeds via a phase of coexistence or via a cone(canted) phase.We demonstrate how the application of the general theoretical ideas to carefully designed measurements leads to the determination of the most important material parameters in any ultrathin-film SRT,namely,the surface(interface) magnetic anisotropy constants.The review concludes by our personal outline for future promising work on SRTs.