The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc...The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.展开更多
As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly i...As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.展开更多
In this study, a new zirconium-mediated cycloaddition for preparing dibenzosilole derivatives was developed using siliconbridged diynes and electron-withdrawing alkynes as starting materials. The preparation of silico...In this study, a new zirconium-mediated cycloaddition for preparing dibenzosilole derivatives was developed using siliconbridged diynes and electron-withdrawing alkynes as starting materials. The preparation of silicon-bridged diynes from 1-bromide-2-iodobenzene, terminal alkynes, and dimethyldichlorosilane was also studied. Unlike in the previous synthesis methods, much higher yields of electron-withdrawing group-substituted dibenzosilole derivatives were obtained. In addition, a new synthesis strategy for preparing benzonaphthosilole derivatives using internal alkynes, 1,4-dibromobenzene, and electron-withdrawing alkynes as starting materials is proposed. Compared with previous methods, alkyl, phenyl, and electron-withdrawing groups can be successfully introduced onto aromatic rings, and the positions of these substituents can be easily controlled. The cycloaddition reactions for dibenzosilole and benzonaphthosilole derivatives are highly efficient one-pot processes, and the raw materials are available and easily prepared. Using these new methods, a series of novel multisubstituted dibenzonsilole and benzonaphthosilole derivatives were obtained effectively.展开更多
The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemi...The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.展开更多
TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) ...TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950 ℃for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA.h/g. And the rate caoacitv is 73.2 mA-h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.展开更多
Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a co...Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C).展开更多
High yields of CoFe204, NiFe204 and CdFe204 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in...High yields of CoFe204, NiFe204 and CdFe204 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries.展开更多
We report a method to eliminate the irreversible capacity of 0.4Li_2MnO_3·0.6LiNi_(0.5)Mn_(0.5)O_2(Li_(1.17)Ni_(0.25)Mn_(0.583)O_2) by decreasing lithium content to yield integrated layered-spinel structures.XRD ...We report a method to eliminate the irreversible capacity of 0.4Li_2MnO_3·0.6LiNi_(0.5)Mn_(0.5)O_2(Li_(1.17)Ni_(0.25)Mn_(0.583)O_2) by decreasing lithium content to yield integrated layered-spinel structures.XRD patterns,High-resolution TEM image and electrochemical cycling of the materials in lithium cells revealed features consistent with the presence of spinel phase within the materials.When discharged to about 2.8 V,the spinel phase of LiM_2O_4(M=Ni,Mn) can transform to rock-salt phase of Li_2M_2O_4(M=Ni,Mn) during which the tetravalent manganese ions are reduced to an oxidation state of 3.0.So the spinel phase can act as a host to insert back the extracted lithium ions(from the layered matrix) that could not embed back into the layered lattice to eliminate the irreversible capacity loss and increase the discharge capacity.Their electrochemical properties at room temperature showed a high capacity(about 275 mAh g^(-1) at 0.1 C) and exhibited good cycling performance.展开更多
Red phosphorus has received remarkable attention as a promising anode material for sodium ion batteries(NIBs) due to its high theoretical capacity. However, its practical application has been impeded by its intrinsic ...Red phosphorus has received remarkable attention as a promising anode material for sodium ion batteries(NIBs) due to its high theoretical capacity. However, its practical application has been impeded by its intrinsic low electronic conductivity and large volume variations during sodiation/desodiation process. Here, we design a composite to confine nanosized red phosphorus into the hierarchically porous carbon(HPC) walls by a vaporization-condensation strategy. The mass loading of P in the HPC/P composite is optimized to deliver a reversible specific capacity of 2,202 m Ah/gpbased on the mass of red P(836 m Ah/gcompositebased on the total composite mass), a high capacity retention over 77% after100 cycles, and excellent rate performance of 929 m Ah/gpat 2 C. The hierarchical porous carbon serves as the conductive networks, downsize the red phosphorus to nanoscale, and provide free space to accommodate the large volume expansions. The suppressed mechanical failure of the red phosphorus also enhances the stability of solid-electrolyte interface(SEI) layer, which is confirmed by the microscopy and impedance spectroscopy after the cycling tests. Our studies provide a feasible approach for potentially viable high-capacity NIB anode.展开更多
An extremely effortless method was applied for successful synthesis of mesoporous carbonaceous materials(MCMs) using well-ordered mesoporous silica as template. Various characterizations(scanning electron microscopy(S...An extremely effortless method was applied for successful synthesis of mesoporous carbonaceous materials(MCMs) using well-ordered mesoporous silica as template. Various characterizations(scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), Raman, X-ray photoelectron spectroscopy(XPS), Brunner-Emmet-Teller(BET) and Zeta potential) confirmed that MCMs had large surface area, uniform pore size distribution, and abundant oxygen-containing functional groups. The batch techniques were employed to study U(VI) adsorption on MCMs under a wide range of experiment conditions. The adsorption kinetics of U(VI) onto MCMs were well-fitted by pseudo-second-order kinetic model, indicating a chemisorption process. The excellent adsorption capacity of MCMs calculated from the Langmuir model was 293.95 mg g^(-1) at pH 4.0. The FT-IR and XPS analyses further evidenced that the binding of U(VI) onto MCMs was ascribed to the plentiful adsorption sites(–OH and –COOH groups) in the internal mesoporous structure, which could efficiently trap guest U(VI) ions. The results presented herein revealed that MCMs were ideal adsorbents in the efficient elimination of uranium or other lanthanides/actinides from aqueous solutions, which would play an important role in environmental pollution management application.展开更多
A one-step electrochemical approach for synthesis of Pt nanoparticles/reduced graphene oxide (Pt/RGO) was demonstrated. Graphene oxide (GO) and chloroplatinic acid were reduced to RGO and Pt nanoparticles (Pt NPs...A one-step electrochemical approach for synthesis of Pt nanoparticles/reduced graphene oxide (Pt/RGO) was demonstrated. Graphene oxide (GO) and chloroplatinic acid were reduced to RGO and Pt nanoparticles (Pt NPs) simultaneously, and Pt/RGO composite was deposited on the fluorine doped SnO2 glass during the electrochemical reduction. The Pt/RGO composite was characterized by field emission-scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy, which confirmed the reduction of GO and chloroplatinic acid and the formation of Pt/RGO composite. In comparison with Pt NPs and RGO electrodes obtained by the same method, results of cyclic voltammetry and electrochemical impedance spec- troscopy measurements showed that the composite electrode had higher catalytic activity and charge transfer rate. In addition, the composite electrode had proved to have better performance in DSSCs than the Pt NPs electrode, which showed the poten- tial application in energy conversion.展开更多
基金Project(10B054)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Program of Hunan Province,China
文摘The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.
基金Project(B15020060)supported by Fundamental Research Funds for the Central Universities,China
文摘As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.
基金supported by the National Natural Science Foundation of China(No.21102099)
文摘In this study, a new zirconium-mediated cycloaddition for preparing dibenzosilole derivatives was developed using siliconbridged diynes and electron-withdrawing alkynes as starting materials. The preparation of silicon-bridged diynes from 1-bromide-2-iodobenzene, terminal alkynes, and dimethyldichlorosilane was also studied. Unlike in the previous synthesis methods, much higher yields of electron-withdrawing group-substituted dibenzosilole derivatives were obtained. In addition, a new synthesis strategy for preparing benzonaphthosilole derivatives using internal alkynes, 1,4-dibromobenzene, and electron-withdrawing alkynes as starting materials is proposed. Compared with previous methods, alkyl, phenyl, and electron-withdrawing groups can be successfully introduced onto aromatic rings, and the positions of these substituents can be easily controlled. The cycloaddition reactions for dibenzosilole and benzonaphthosilole derivatives are highly efficient one-pot processes, and the raw materials are available and easily prepared. Using these new methods, a series of novel multisubstituted dibenzonsilole and benzonaphthosilole derivatives were obtained effectively.
文摘The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.
基金Project(2007BAE12B01) supported by the National Key Technology R&D Program of China
文摘TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950 ℃for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA.h/g. And the rate caoacitv is 73.2 mA-h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.
基金supported by the National Natural Science Foundation of China (51672282, 21373238)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010101)
文摘Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C).
文摘High yields of CoFe204, NiFe204 and CdFe204 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries.
基金Financial support by the National Basic Research Program of China(2009CB220105)Beijing Natural Science Foundation (2120001)
文摘We report a method to eliminate the irreversible capacity of 0.4Li_2MnO_3·0.6LiNi_(0.5)Mn_(0.5)O_2(Li_(1.17)Ni_(0.25)Mn_(0.583)O_2) by decreasing lithium content to yield integrated layered-spinel structures.XRD patterns,High-resolution TEM image and electrochemical cycling of the materials in lithium cells revealed features consistent with the presence of spinel phase within the materials.When discharged to about 2.8 V,the spinel phase of LiM_2O_4(M=Ni,Mn) can transform to rock-salt phase of Li_2M_2O_4(M=Ni,Mn) during which the tetravalent manganese ions are reduced to an oxidation state of 3.0.So the spinel phase can act as a host to insert back the extracted lithium ions(from the layered matrix) that could not embed back into the layered lattice to eliminate the irreversible capacity loss and increase the discharge capacity.Their electrochemical properties at room temperature showed a high capacity(about 275 mAh g^(-1) at 0.1 C) and exhibited good cycling performance.
基金supported by the National Natural Science Foundation of China(51603013,61574018,and 21606050)the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)+1 种基金‘‘Hundred Talents Program"of CASthe National Key Research and Development Program of China(2016YFA0202703)
文摘Red phosphorus has received remarkable attention as a promising anode material for sodium ion batteries(NIBs) due to its high theoretical capacity. However, its practical application has been impeded by its intrinsic low electronic conductivity and large volume variations during sodiation/desodiation process. Here, we design a composite to confine nanosized red phosphorus into the hierarchically porous carbon(HPC) walls by a vaporization-condensation strategy. The mass loading of P in the HPC/P composite is optimized to deliver a reversible specific capacity of 2,202 m Ah/gpbased on the mass of red P(836 m Ah/gcompositebased on the total composite mass), a high capacity retention over 77% after100 cycles, and excellent rate performance of 929 m Ah/gpat 2 C. The hierarchical porous carbon serves as the conductive networks, downsize the red phosphorus to nanoscale, and provide free space to accommodate the large volume expansions. The suppressed mechanical failure of the red phosphorus also enhances the stability of solid-electrolyte interface(SEI) layer, which is confirmed by the microscopy and impedance spectroscopy after the cycling tests. Our studies provide a feasible approach for potentially viable high-capacity NIB anode.
基金supported by the National Natural Science Foundation of China(91326202,21577032)the Fundamental Research Funds for the Central Universities(JB2015001,JB2017057)the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘An extremely effortless method was applied for successful synthesis of mesoporous carbonaceous materials(MCMs) using well-ordered mesoporous silica as template. Various characterizations(scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), Raman, X-ray photoelectron spectroscopy(XPS), Brunner-Emmet-Teller(BET) and Zeta potential) confirmed that MCMs had large surface area, uniform pore size distribution, and abundant oxygen-containing functional groups. The batch techniques were employed to study U(VI) adsorption on MCMs under a wide range of experiment conditions. The adsorption kinetics of U(VI) onto MCMs were well-fitted by pseudo-second-order kinetic model, indicating a chemisorption process. The excellent adsorption capacity of MCMs calculated from the Langmuir model was 293.95 mg g^(-1) at pH 4.0. The FT-IR and XPS analyses further evidenced that the binding of U(VI) onto MCMs was ascribed to the plentiful adsorption sites(–OH and –COOH groups) in the internal mesoporous structure, which could efficiently trap guest U(VI) ions. The results presented herein revealed that MCMs were ideal adsorbents in the efficient elimination of uranium or other lanthanides/actinides from aqueous solutions, which would play an important role in environmental pollution management application.
文摘A one-step electrochemical approach for synthesis of Pt nanoparticles/reduced graphene oxide (Pt/RGO) was demonstrated. Graphene oxide (GO) and chloroplatinic acid were reduced to RGO and Pt nanoparticles (Pt NPs) simultaneously, and Pt/RGO composite was deposited on the fluorine doped SnO2 glass during the electrochemical reduction. The Pt/RGO composite was characterized by field emission-scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy, which confirmed the reduction of GO and chloroplatinic acid and the formation of Pt/RGO composite. In comparison with Pt NPs and RGO electrodes obtained by the same method, results of cyclic voltammetry and electrochemical impedance spec- troscopy measurements showed that the composite electrode had higher catalytic activity and charge transfer rate. In addition, the composite electrode had proved to have better performance in DSSCs than the Pt NPs electrode, which showed the poten- tial application in energy conversion.