期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
智能化识别技术在电子图像处理中的应用研究 被引量:2
1
作者 耿宾涛 《电子世界》 2017年第22期161-161,163,共2页
在社会的不断发展中,科技也在不断进步。运用智能化识别技术在处理电子图像的问题上被广泛应用,那么,如何利用智能化识别技术,智能化识别技术有哪些特点,特征以及智能化识别技术如何爱电子图像处理中最大化的应用。本文将浅析在电子图... 在社会的不断发展中,科技也在不断进步。运用智能化识别技术在处理电子图像的问题上被广泛应用,那么,如何利用智能化识别技术,智能化识别技术有哪些特点,特征以及智能化识别技术如何爱电子图像处理中最大化的应用。本文将浅析在电子图像处理中,智能化识别技术应用的相关研究。 展开更多
关键词 智能化 识别技术 电子图像处理
下载PDF
电子图像处理中智能化识别技术的应用 被引量:2
2
作者 翁亚滨 《计算机产品与流通》 2019年第5期143-144,共2页
电子信息技术的快速发展,使得电子图像在各行各业中得到了广泛应用。为进一步提升电子图像处理质量,达到最佳图像应用效果,业界学者开始将智能化识别技术应用到了电子图像处理之中。本文将以智能化识别技术应用原理与应用优势介绍为切入... 电子信息技术的快速发展,使得电子图像在各行各业中得到了广泛应用。为进一步提升电子图像处理质量,达到最佳图像应用效果,业界学者开始将智能化识别技术应用到了电子图像处理之中。本文将以智能化识别技术应用原理与应用优势介绍为切入点,通过对技术应用现状的分析,对该技术在电子图像处理中的实际应用展开全面论述,并会就此项技术发展做出展望,旨在提升智能化识别技术应用水平,保证电子图像最终处理质量。 展开更多
关键词 智能化识别技术 技术应用原理 像素 电子图像处理
下载PDF
胃蛋白酶原联合色素胃镜及富士能电子分光图像处理技术在胃黏模癌前病变诊断中的应用价值 被引量:2
3
作者 童春华 《中国当代医药》 2018年第27期51-53,共3页
目的探讨胃蛋白酶原联合色素胃镜及富士能电子分光图像处理(FICE)技术在胃黏模癌前病变诊断中的应用价值。方法选取2016年8月~2017年10月我院术后病理学证实为胃黏膜癌前病变的76例患者作为研究对象,随机分为对照组和研究组,每组各38... 目的探讨胃蛋白酶原联合色素胃镜及富士能电子分光图像处理(FICE)技术在胃黏模癌前病变诊断中的应用价值。方法选取2016年8月~2017年10月我院术后病理学证实为胃黏膜癌前病变的76例患者作为研究对象,随机分为对照组和研究组,每组各38例。对照组在治疗前单纯采用色素胃镜进行检查,研究组在治疗前采用胃蛋白酶原联合色素胃镜及FICE技术进行检查,比较两组的应用价值。结果研究组患者治疗前误诊和漏诊率低于对照组;诊断原因导致的纠纷事件发生率仅为2.6%,低于对照组的13.2%;治疗前检查结果与治疗后证实结果的符合率达到94.7%,高于对照组的71.1%;检查操作时间长于对照组;对疾病诊断方案的总满意度达到97.4%,高于对照组的84.2%,差异均有统计学意义(P<0.05)。结论胃黏膜癌前病变患者采用胃蛋白酶原联合色素胃镜及FICE技术进行诊断,虽操作时间会延长,但可提高检查的准确率,减少误诊和漏诊,降低纠纷事件发生率,提高患者对临床诊断的满意度。 展开更多
关键词 胃黏膜癌前病变 胃蛋白酶原 色素胃镜 富士能电子分光图像处理 诊断
下载PDF
FICE不同波长组合加放大内镜观察大肠隆起性病变微细结构的应用研究 被引量:1
4
作者 陈斌 黄伟 +1 位作者 周立平 陈姣艳 《河北医学》 CAS 2014年第3期383-385,共3页
目的:探讨应用FICE波长最佳组合+放大内镜观察大肠隆起性病变微细结构,与病变病理学诊断结果相对照,对大肠隆起性病变作出正确及时的诊断并加以治疗。方法:用放大变焦结肠镜常规检查,记录病灶部位,形态。用FICE的10种红绿蓝(RGB)不同波... 目的:探讨应用FICE波长最佳组合+放大内镜观察大肠隆起性病变微细结构,与病变病理学诊断结果相对照,对大肠隆起性病变作出正确及时的诊断并加以治疗。方法:用放大变焦结肠镜常规检查,记录病灶部位,形态。用FICE的10种红绿蓝(RGB)不同波长组合,观察粘膜表面的微细腺管形态及微血管形态,记录最佳波长组合,然后使用放大40-200倍放大病灶。结果:通过应用FICE不同波长最佳组合+放大内镜观察结肠隆起性病变的微细结构,与病理组织学诊断符合率在90%以上。结论:根据FICE不同波长最佳组合+放大内镜观察可即时鉴别结肠粘膜的肿瘤性及非肿瘤性病变,指导相应的镜下或手术治疗,提高诊治早期大肠癌的敏感性和准确率。 展开更多
关键词 电子分光图像处理技术 放大内镜 大肠隆起性病变
下载PDF
UNDERSTANDING HREM IMAGES OF Al-Mn-Si ICOSAHEDRAL QUASICRYSTAL
5
作者 闵乐泉 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1996年第2期142+140-142,共4页
提出了处理数字化图像的光滑算子。用它处理了Al-Mn-Si二十面体准晶的高分辨电子显微图,处理后的图像展示了周期结构特征,由此建立了一个平面周期模型,其Fourier变换图符合Al-Mn-Si准晶相应的电子衍射图。
关键词 图像处理 高分辨电子显微图 准晶 周期模型 Fourier变换图
下载PDF
A New Edge-directed Subpixel Edge Localization Method
6
作者 于新瑞 徐威 +1 位作者 王石刚 李倩 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期73-77,共5页
Localization of the inspected chip image is one of the key problems with machine vision aided surface mount devices (SMD) and other micro-electronic equipments. This paper presents a new edge-directed subpixel edge lo... Localization of the inspected chip image is one of the key problems with machine vision aided surface mount devices (SMD) and other micro-electronic equipments. This paper presents a new edge-directed subpixel edge localization method. The image is divided into two regions, edge and non-edge, using edge detection to emphasize the edge feature. Since the edges of the chip image are straight, they have straight-line characteristics locally and globally. First, the line segments of the straight edge are located to subpixel precision, according to their local straight properties, in a 3×3 neighborhood of the edge region. Second, the subpixel midpoints of the line segments are computed. Finally, the straight edge is fitted using the midpoints and the least square method, according to its global straight property in the entire edge region. In this way, the edge is located to subpixel precision. While fitting the edge, the irregular points are eliminated by the angles of the line segments to improve the precision. We can also distinguish different edges and their intersections using the angles of the line segments and distances between the edge points, then give the vectorial result of the image edge with high precision. 展开更多
关键词 edge-directed straight edge SUBPIXEL image localization micro-electronic fabrication.
下载PDF
Automatic recognition and quantitative analysis of Ω phases in Al-Cu-Mg-Ag alloy
7
作者 刘冰滨 谷艳霞 +1 位作者 刘志义 田小林 《Journal of Central South University》 SCIE EI CAS 2014年第5期1696-1704,共9页
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi... The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved. 展开更多
关键词 auto pattern recognition top-hat transformation second phases in A1 alloy quantitative analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部