期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
测量超声检验仪某些电子学性能的标准指南
1
作者 李家伟 《无损检测》 1998年第6期176-180,共5页
对宏观缺陷和微观组织的超声无损评价来说,如果不了解仪器电性能和探头性能,所得结果往往是不可重复和不可相比的,是可怀疑的.本标准是学会标准化工作委员会推荐标准之一,所提出的超声仪器和系统性能测试内容和方法对超声仪研制生产部... 对宏观缺陷和微观组织的超声无损评价来说,如果不了解仪器电性能和探头性能,所得结果往往是不可重复和不可相比的,是可怀疑的.本标准是学会标准化工作委员会推荐标准之一,所提出的超声仪器和系统性能测试内容和方法对超声仪研制生产部门很有参考价值,这样做可使不同仪器的电性能具有可比性;而对使用者来说,则可根据需要,按厂商提供的数据作出合理的选择. 展开更多
关键词 超声检测 超声检验仪 电子学性能 标准指南
下载PDF
BESⅢ飞行时间探测器电子学中的光电倍增管测试 被引量:4
2
作者 吴金杰 衡月昆 +5 位作者 刘树彬 郭建华 封常青 安琪 孙志嘉 赵玉达 《核技术》 EI CAS CSCD 北大核心 2008年第1期5-9,共5页
讨论了北京谱仪(BESⅢ)飞行时间探测器(TOF)前端电子学的物理需求。因光电倍增管信号为前端电子学实际使用,而以光电倍增管信号作为信号源测试电子学性能是一种方便易行的方法,所以本文采用光电倍增管信号作为信号源测试电子学的性能。... 讨论了北京谱仪(BESⅢ)飞行时间探测器(TOF)前端电子学的物理需求。因光电倍增管信号为前端电子学实际使用,而以光电倍增管信号作为信号源测试电子学性能是一种方便易行的方法,所以本文采用光电倍增管信号作为信号源测试电子学的性能。测试结果表明现行设计的电子学性能已达到BESⅢ飞行时间探测器对电子学的预期目标。 展开更多
关键词 北京谱仪 飞行时间探测器 电子学 时间性能 幅度性能
下载PDF
层状类钙钛矿结构有机-无机杂合物的结构与性能 被引量:5
3
作者 郭丽玲 刘韩星 《功能材料》 EI CAS CSCD 北大核心 2008年第7期1062-1066,共5页
层状类钙钛矿结构有机-无机杂合物是由有机、无机组元在分子尺度上组装而成的一类新材料,其结构和能带具有可设计可控性,因此应用前景广阔。综述了层状类钙钛矿杂合物的结构形成规则和组成、结构变化对能带及其电子学性能的影响。
关键词 层状钙钛矿 有机-无机/杂合材料 结构 能带 电子学性能
下载PDF
Research progress on carbon-based zinc-ion capacitors
4
作者 LUO Jun-hui XIAO Hao-ming +3 位作者 PENG Jun WANG Fu-jian LUO Xian-you CHEN Yong 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期918-945,共28页
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe... Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use. 展开更多
关键词 Zinc-ion capacitors Electrochemical performance Carbon materials Pore structure Surface chemical properties
下载PDF
Mechanical properties and electronic structures of MgCu_2, Mg_2Ca and MgZn_2 Laves phases by first principles calculations 被引量:6
5
作者 毛萍莉 于波 +2 位作者 刘正 王峰 鞠阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2920-2929,共10页
Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculate... Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heat of formation and cohesive energies showed that MgCu2 has the strongest alloying ability and structural stability. Elastic constants of MgCu2, Mg2 Ca and MgZn2 were calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio were derived. The calculated results show that MgCu2, Mg2 Ca and MgZn2 are all ductile phases. Among the three phases, MgCu2 has the strongest stiffness and the plasticity of MgZn2 phase is the best. Melting points of the three phases were predicted using cohesive energy and elastic constants. Density of states(DOS), Mulliken population, electron occupation number and charge density difference were discussed. Finally, Debye temperature was calculated and discussed. 展开更多
关键词 magnesium alloy MgCu2 Mg2Ca MgZn2 Laves phases electronic structure mechanical property Debye temperature
下载PDF
Microstructure and properties of Al/Si/SiC composites for electronic packaging 被引量:13
6
作者 朱晓敏 于家康 王新宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1686-1692,共7页
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh... The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution. 展开更多
关键词 Al/Si/SiC composite electronic packaging thermal properties flexural strength
下载PDF
Electron beam welding of 304 stainless steel to QCr0.8 copper alloy with copper filler wire 被引量:5
7
作者 张秉刚 赵健 +1 位作者 李晓鹏 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期4059-4066,共8页
Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ... Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa. 展开更多
关键词 304 stainless steel QCr0.8 copper alloy electron beam welding dissimilar joint mechanical properties
下载PDF
Influences of transition metal on structural and electrochemical properties of Li[Ni_xCo_yMn_z]O_2(0.6≤x≤0.8) cathode materials for lithium-ion batteries 被引量:5
8
作者 潘成迟 朱裔荣 +5 位作者 杨应昌 侯红帅 景明俊 宋维鑫 杨旭明 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1396-1402,共7页
Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observ... Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles. 展开更多
关键词 Li[NixCoyMnz]O2 electrochemical performance cathode material lithium-ion battery
下载PDF
Effect of hot working on microstructure and mechanical properties of TC11/Ti_2AlNb dual-alloy joint welded by electron beam welding process 被引量:3
9
作者 秦春 姚泽坤 +2 位作者 李誉之 宁永权 郭鸿镇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3500-3508,共9页
The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens... The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions. 展开更多
关键词 hot working titanium alloy mechanical properties thermal stability electron beam welding
下载PDF
Effects of Fe_(2)O_(3) content on microstructure and mechanical properties of CaO-Al_(2)O_(3)-SiO_(2) system 被引量:4
10
作者 任祥忠 张卫 +2 位作者 章勇 张培新 刘剑洪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期137-145,共9页
The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc... The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h. 展开更多
关键词 glass-ceramics CaO-Al_(2)O_(3)-SiO_(2) system Fe_(2)O_(3) electron paramagnetic resonance Mossbauer spectroscopy mechanical properties
下载PDF
First-principles investigations of structural, mechanical, electronic and optical properties of U_3Si_2-type AlSc_2Si_2 under high pressure
11
作者 张旭东 王峰 姜伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期148-156,共9页
The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a... The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications. 展开更多
关键词 U3Si2-type AlSc2Si2 mechanical properties electronic structure optical properties first-principles calculations
下载PDF
Microstructure and mechanical properties of Ti-43Al-9V alloy fabricated by spark plasma sintering 被引量:2
12
作者 徐丽娟 肖树龙 +1 位作者 陈玉勇 王娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期768-772,共5页
A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties w... A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%. 展开更多
关键词 TiAl alloy mechanical alloying spark plasma sintering MICROSTRUCTURE mechanical properties
下载PDF
Microstructure characteristics and mechanical properties of TiB/Ti-1.5Fe-2.25Mo composites synthesized in situ using SPS process
13
作者 张朝晖 神祥博 +3 位作者 王富耻 魏赛 李树奎 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2598-2604,共7页
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro... TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite. 展开更多
关键词 titanium boride (TiB) titanium matrix composites (TMCs) spark plasma sintering (SPS) microstructure mechanicalproperties
下载PDF
Influences of different filler metals on electron beam welding of titanium alloy to stainless steel 被引量:10
14
作者 王廷 张秉刚 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期108-114,共7页
Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning ... Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa. 展开更多
关键词 titanium alloy stainless steel filler metal electron beam welding mechanical property
下载PDF
Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior lithium-storage performance 被引量:4
15
作者 ZHOU Xiao-zhong LU He-jie +2 位作者 TANG Xing-chang ZENG Ya-ping YU Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1493-1502,共10页
Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries,whereas they were commonly synthesized through time-consuming and costly processes.Here,Sb@Sb2O3/re... Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries,whereas they were commonly synthesized through time-consuming and costly processes.Here,Sb@Sb2O3/reduced graphene oxide(Sb@Sb2O3/rGO)composite was successfully synthesized by a facile one-pot chemical method at ambient temperature.Based on the XRD and TGA analysis,the mass fractions of Sb and Sb2O3 in the Sb@Sb2O3/rGO composite are ca.34.05%and 26.6%,respectively.When used as an alternative electrode for lithium ion batteries,a high reversible capacity of 790.9 mA·h/g could be delivered after 200 cycles with the capacity retention of 93.8%at a current density of 200 mA/g.And a capacity of 260 mA·h/g could be maintained even at 2000 mA/g.These excellent electrochemical properties can be attributed to its well-constructed nanostructure.The Sb and Sb2O3 particles with size of 10 nm were tightly anchored on rGO sheets through electronic coupling,which could not only alleviate the stress induced by the volume expansion,suppress the aggregation of Sb and Sb2O3 particles,but also improve the electron transfer ability during cycling. 展开更多
关键词 Sb@Sb2O3/rGO composite synthesis electrochemical performance lithium-ion batteries
下载PDF
Comparison of thermal and mechanical properties of γ'-Pt_(3)Al and γ'-Ni_(3)Al phases:A first principles study 被引量:1
16
作者 ZHANG Xiao ZHOU Xiao-long +2 位作者 YAO Bi-xia YU Jie WANG Li-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期32-42,共11页
High-temperature Ni-based alloys are widely used in the aerospace field due to their excellent properties,but the shortcomings of brittle fracture at the grain boundaries and poor plasticity at room temperature also l... High-temperature Ni-based alloys are widely used in the aerospace field due to their excellent properties,but the shortcomings of brittle fracture at the grain boundaries and poor plasticity at room temperature also limit their development to a certain extent.Researchers found that there areγ′precipitation phases similar to Ni_(3)Al in Pt-Al based alloys.In this paper,the CASTEP code of Materials Studio software package is used to simulate the thermal and mechanical properties ofγ′-Pt_(3)Al phase andγ′-Ni_(3)Al phase.By comparing the performance characteristics of the electronic structure,mechanical properties and point defect structure of the two,it is found that the stability,elastic deformation resistance and high temperature creep resistance of theγ′-Pt_(3)Al phase are better than those of theγ′-Ni_(3)Al phase.This will provide theoretical guidance for promoting the development of Pt-Al-based high-temperature materials. 展开更多
关键词 first-principles study SUPERALLOY γ'-Pt 3 Al electronic properties mechanical-properties
下载PDF
Addition of Ce as additive to Pb-Ca-Sn-Al grid alloy for lead acid battery 被引量:3
17
作者 魏杰 王东田 +1 位作者 栾中华 郭强 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期28-30,共3页
The study on three Pb Ca Sn Al alloys with 0.08%, 0.4% and 1.0% of Ce indicates that the addition of Ce results in an obvious increase in the tensile strength and hardness of the alloys, an increase in the overpotenti... The study on three Pb Ca Sn Al alloys with 0.08%, 0.4% and 1.0% of Ce indicates that the addition of Ce results in an obvious increase in the tensile strength and hardness of the alloys, an increase in the overpotentials of hydrogen and oxygen evolution and the corrosion resistance as well. The study on the corrosion film formed on the alloys by cyclic voltammetry shows that the addition of Ce slows down the formation of corrosion film. It is therefore concluded from the experimental results that the addition of Ce can increase the tensile strength and HB of Pb Ca alloy and the tensile strength and HB of the alloy increase with the increase of Ce; the addition of Ce also increases the hydrogen and oxygen evolution overpotentials of Pb Ca alloy, and when the content of Ce is 1.0%, the alloy has the highest hydrogen and oxygen evolution overpoteatials; the addition of Ce improves the anticorrosion capability of the alloy, and when the content Ce is 1.0%, the alloy has the best anticorrosion capability; and the addition of Ce also slows down the formation of corrosion film. 展开更多
关键词 lead acid battery grid alloy CE electrochemical performance
下载PDF
Study on structural,mechanical and thermodynamic properties of TiAl alloy under high pressure based on first-principles
18
作者 邓世杰 赵宇宏 +1 位作者 文志勤 韩培德 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期147-153,共7页
The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results s... The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results show that the volume decrea-ses with the pressure increasing. We calculated the CtJ at various pressures and all the results satisfy mechanical stability crite-ria, thus the TiAl alloy is mechanically stable. The elastic constants? bulk modulus and shear modulus calculated are well in a-greement with the calculated values at zero the pressure. The bulk modulus and shear modulus increase with the pressure in-creasing, which reflects the deformation resistance, and accordingly, deformation resistance can be strengthened with the in-crease of pressure. The brittle nature of TiAl alloy turns to ductile nature in 10 - 20 GPa . The Debye temperature, linear ther-mal expansion and heat capacity are calculated using the quasi-harmonic Debye model under the pressure ranging from 0 to 50 GPa and the temperature ranging from 0 to 1 000 K, which are useful to investigate the effect of temperature and pressure on thermodynamic parameters. Finally, electronic structure is calculated at various pressures,and it can be found that the peak intensity decreases with increasing pressure and the the strength of d-d orbital of Ti is weakened but the ductility is enhanced. 展开更多
关键词 TiAl alloy FIRST-PRINCIPLES crystal structure elastic properties thermodynamic properties electronic structure
下载PDF
Electrochemical lithium storage performance of three-dimensional foam-like biocarbon/MoS2 composites 被引量:6
19
作者 Bei-bei MA Shui-jiao CHEN +4 位作者 Ye-wei HUANG Zhen-zhen NIE Xiao-bin QIU Xiu-qiang XIE Zhen-jun WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期255-264,共10页
Molybdenum disulfide(MoS2)was loaded on biocarbon using waste camellia dregs(CDs)as the carbon source,which was further coated with dopamine hydrochloride to construct biocarbon/MoS2 electrode composites.The electroch... Molybdenum disulfide(MoS2)was loaded on biocarbon using waste camellia dregs(CDs)as the carbon source,which was further coated with dopamine hydrochloride to construct biocarbon/MoS2 electrode composites.The electrochemical lithium storage performance of the composites with different MoS2 contents was investigated.SEM results demonstrated that the composite had a three-dimensional foam-like structure with MoS2 as the interlayer.XRD and HRTEM tests revealed that MoS2 interlayer spacing in the composite was expanded.XPS analysis showed that new Mo—N bonds were formed in the active material.The electrochemical tests showed that the composite with a MoS2 content of 63%had a high initial specific capacity of 1434 mA·h/g at a current density of 100 mA/g.After a long cycle at a high current,it also showed good cycling stability and the capacity retention was nearly 100%.In addition,it had good lithium ion deintercalation ability in the electrochemical kinetics test. 展开更多
关键词 electrochemical lithium storage performance lithium-ion batteries camellia dregs MOS2 COMPOSITES pseudocapacity anode
下载PDF
MoSe_(2)@N, P-C composites for sodium ion battery 被引量:2
20
作者 PENG Tao LUO Yu-hong +6 位作者 TANG Lin-bo HE Zhen-jiang YAN Cheng MAO Jing DAI Ke-hua WU Xian-wen ZHENG Jun-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2991-3002,共12页
The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stabilit... The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stability.In this work,MoSe_(2) nanosheets were synthesized by a solvothermal method.An organic solvent was intercalated into the MoSe_(2) materials to enlarge the interlayer spacing and improve the conductivity of the material.The MoSe_(2) material was coated with an organic pyrolysis carbon and then a uniform carbon layer was formed.The surface carbon hybridization of the nanosheet materials was realized by the introduction of heteroatoms during the sintering process.The as-prepared MoSe_(2)@N,P-C composites showed a superior rate performance as it could maintain the integrity of the morphology and structure under a high current density.The composites had a discharge specific capacity of 302.4 mA·h/g after 100 cycles at 0.5 A/g,and the capacity retention rate was 84.96%. 展开更多
关键词 sodium ion battery MoSe_(2) anode materials atomic doping electrochemical performance
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部