目的克隆一个新的人睾丸特异性基因。方法运用电子差异展示方法筛选人类睾丸特异表达新基因,获得有差异显示的代表新基因的克隆重叠群,挑选其中一个克隆重叠群Hs.180197进行多组织RT-PCR验证该重叠群在人睾丸中的表达。然后从包含该重...目的克隆一个新的人睾丸特异性基因。方法运用电子差异展示方法筛选人类睾丸特异表达新基因,获得有差异显示的代表新基因的克隆重叠群,挑选其中一个克隆重叠群Hs.180197进行多组织RT-PCR验证该重叠群在人睾丸中的表达。然后从包含该重叠群的IMAGE克隆出发,采用生物信息学方法克隆一个人类新基因的全长cDNA序列。结果新基因全长1197bp,开放阅读框为504~806bp,定位于6p21.1-p21.2,编码由100个氨基酸组成,相对分子质量为10000,等电点为6.81的一个蛋白,该蛋白与已知蛋白无同源性。克隆实验验证该基因阅读框完全正确,推测其可能与精子生成相关,暂命名为TDRG1(testis development related gene1),GenBank登录号为DQ168992。结论电子差异展示方法与实验验证相结合用于发现人类功能新基因是行之有效的。展开更多
Hydrogenated amorphous Si (a-Si:H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the eff...Hydrogenated amorphous Si (a-Si:H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the effect of nanostructured back reflectors on quantum efficiency in photovoltaic devices. We adopt a superstrate configuration so that we may use conventional industrial light trapping strategies for thin film solar cells as a reference for comparison. We controlled the nanostructure parameters via a wafer-scale self-assembly technique and systematically studied the relation between nanostructure size and photocurrent generation. The gain/loss transition at short wavelengths showed red-shifts with decreasing nanostructure scale. In the infrared region the nanostructured back reflector shows large photocurrent enhancement with a modified feature scale. This device geometry is a useful archetype for investigating absorption enhancement by nanostructures.展开更多
文摘目的克隆一个新的人睾丸特异性基因。方法运用电子差异展示方法筛选人类睾丸特异表达新基因,获得有差异显示的代表新基因的克隆重叠群,挑选其中一个克隆重叠群Hs.180197进行多组织RT-PCR验证该重叠群在人睾丸中的表达。然后从包含该重叠群的IMAGE克隆出发,采用生物信息学方法克隆一个人类新基因的全长cDNA序列。结果新基因全长1197bp,开放阅读框为504~806bp,定位于6p21.1-p21.2,编码由100个氨基酸组成,相对分子质量为10000,等电点为6.81的一个蛋白,该蛋白与已知蛋白无同源性。克隆实验验证该基因阅读框完全正确,推测其可能与精子生成相关,暂命名为TDRG1(testis development related gene1),GenBank登录号为DQ168992。结论电子差异展示方法与实验验证相结合用于发现人类功能新基因是行之有效的。
文摘Hydrogenated amorphous Si (a-Si:H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the effect of nanostructured back reflectors on quantum efficiency in photovoltaic devices. We adopt a superstrate configuration so that we may use conventional industrial light trapping strategies for thin film solar cells as a reference for comparison. We controlled the nanostructure parameters via a wafer-scale self-assembly technique and systematically studied the relation between nanostructure size and photocurrent generation. The gain/loss transition at short wavelengths showed red-shifts with decreasing nanostructure scale. In the infrared region the nanostructured back reflector shows large photocurrent enhancement with a modified feature scale. This device geometry is a useful archetype for investigating absorption enhancement by nanostructures.