HAXPES (hard X-ray photoelectron spectroscopy) is a powerful emerging instrument in surface analysis. It extended the photoelectron energy range up to 15,000 eV and opened the possibility to study much thicker films...HAXPES (hard X-ray photoelectron spectroscopy) is a powerful emerging instrument in surface analysis. It extended the photoelectron energy range up to 15,000 eV and opened the possibility to study much thicker films, buried layers and bulk electronic properties. In order to study these features, data for the electron IMFP (inelastic mean free path) at these energies is needed. To date, only calculated IMFP are available at energies above 5,000 eV and therefore experimental validation of these calculations are essential. In this paper, a new approach for using the HAXPES spectra is presented. This approach, treats the attenuated part of the electron spectrum as a whole to calculating the average electron energy loss. This average electron energy loss is the result of inelastic collisions in the material and hence, carry with it information about the electron transport poses. Carbon layers with thicknesses between 20 and 75 nanometer deposited over copper substrate were used to test this approach at the Spanish beam-line (Spline) in the ESRF (European synchrotron radiation facility). The measured results showed good agreement with the predictions of the multiple inelastic scattering theory. In addition, an algorithm for the experimental evaluation of electron IMFP, using the measured energy loss, is proposed.展开更多
This work provides an effective low-cost synthesis and in-depth mechanistic study of high quality large-area nitrogen-doped graphene(NG) films. These films were synthesized using urea as nitrogen source and methane as...This work provides an effective low-cost synthesis and in-depth mechanistic study of high quality large-area nitrogen-doped graphene(NG) films. These films were synthesized using urea as nitrogen source and methane as carbon source, and were characterized by scanning electron microscopy(SEM), Raman spectroscopy and X-ray photoelectron spectroscopy(XPS). The N doping level was determined to be 3.72 at.%, and N atoms were suggested to mainly incorporated in a pyrrolic N configuration. All distinct Raman peaks display a shift due to the nitrogen-doping and compressive strain. The increase in urea concentration broadens the D and 2D peak's Full Width at Half Maximum(FWHM), due to the decrease of mean free path of phonons. The N-doped graphene exhibited an n-type doping behavior with a considerably high carrier mobility of about 74.1 cm2/(V s), confirmed by electrical transport measurements.展开更多
文摘HAXPES (hard X-ray photoelectron spectroscopy) is a powerful emerging instrument in surface analysis. It extended the photoelectron energy range up to 15,000 eV and opened the possibility to study much thicker films, buried layers and bulk electronic properties. In order to study these features, data for the electron IMFP (inelastic mean free path) at these energies is needed. To date, only calculated IMFP are available at energies above 5,000 eV and therefore experimental validation of these calculations are essential. In this paper, a new approach for using the HAXPES spectra is presented. This approach, treats the attenuated part of the electron spectrum as a whole to calculating the average electron energy loss. This average electron energy loss is the result of inelastic collisions in the material and hence, carry with it information about the electron transport poses. Carbon layers with thicknesses between 20 and 75 nanometer deposited over copper substrate were used to test this approach at the Spanish beam-line (Spline) in the ESRF (European synchrotron radiation facility). The measured results showed good agreement with the predictions of the multiple inelastic scattering theory. In addition, an algorithm for the experimental evaluation of electron IMFP, using the measured energy loss, is proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.91123009,10975115)the Natural Science Foundation of Fujian Province of China(Grant No.2012J06002)
文摘This work provides an effective low-cost synthesis and in-depth mechanistic study of high quality large-area nitrogen-doped graphene(NG) films. These films were synthesized using urea as nitrogen source and methane as carbon source, and were characterized by scanning electron microscopy(SEM), Raman spectroscopy and X-ray photoelectron spectroscopy(XPS). The N doping level was determined to be 3.72 at.%, and N atoms were suggested to mainly incorporated in a pyrrolic N configuration. All distinct Raman peaks display a shift due to the nitrogen-doping and compressive strain. The increase in urea concentration broadens the D and 2D peak's Full Width at Half Maximum(FWHM), due to the decrease of mean free path of phonons. The N-doped graphene exhibited an n-type doping behavior with a considerably high carrier mobility of about 74.1 cm2/(V s), confirmed by electrical transport measurements.