Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical c...Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.展开更多
Three-dimensional (3D) copper foams have been formed by electrodeposition at different nitrogen pressures and examined by scanning electron microscopy. The results indicate that an increase in system pressure leads ...Three-dimensional (3D) copper foams have been formed by electrodeposition at different nitrogen pressures and examined by scanning electron microscopy. The results indicate that an increase in system pressure leads to a decrease of the pore size of the copper foam due to the suppressed coalescence of hydrogen bubbles, while the thickness of the copper foam increases with decreasing pressure. Also, the walls around the pores on the copper foam consist of copper dendrites, and the copper dendrites are made up of copper grains with sizes less than 1 l.tm. The average sizes of the copper grains decrease with increasing system pressure. It has been demonstrated that copper foams with controllable 3D structure formed by electrodeposition at different pressures are comparable to those obtained by electrodeposition at normal pressure in the presence of specific additives.展开更多
基金supported by the Natural Science Foundation of Anhui Province(No.2208085J01 and No.2208085QA28).
文摘Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.
基金supported by the National Natural Science Foundation of China (20776004)the Program for New Century Excellent Talents in University (NCET-08-0710)
文摘Three-dimensional (3D) copper foams have been formed by electrodeposition at different nitrogen pressures and examined by scanning electron microscopy. The results indicate that an increase in system pressure leads to a decrease of the pore size of the copper foam due to the suppressed coalescence of hydrogen bubbles, while the thickness of the copper foam increases with decreasing pressure. Also, the walls around the pores on the copper foam consist of copper dendrites, and the copper dendrites are made up of copper grains with sizes less than 1 l.tm. The average sizes of the copper grains decrease with increasing system pressure. It has been demonstrated that copper foams with controllable 3D structure formed by electrodeposition at different pressures are comparable to those obtained by electrodeposition at normal pressure in the presence of specific additives.