近年来,具备可穿戴和柔性功能的便携式电子设备备受关注,对提供其能量的储能器件研究也逐渐成为热点。平面超级电容器具有功率密度高、充放电速率快、循环稳定性好、易于集成等优点,是重要的可穿戴和柔性电子产品的潜在电源。在电极材料...近年来,具备可穿戴和柔性功能的便携式电子设备备受关注,对提供其能量的储能器件研究也逐渐成为热点。平面超级电容器具有功率密度高、充放电速率快、循环稳定性好、易于集成等优点,是重要的可穿戴和柔性电子产品的潜在电源。在电极材料中,锰酸锌(ZnMn_(2)O_(4))拥有较高的理论比电容,但存在电导率较差的难题,这影响了其循环稳定性和功率密度。碳纳米管(CNTs)具有优异的长期稳定性和高功率密度,以及较好的电导率,因此可以通过引入CNTs改善ZnMn_(2)O_(4)电导率。微电子打印技术是是一种简便的制备平面超级电容器的新方法。本文采用水热法制备出ZnMn_(2)O_(4)和CNTs复合材料,并且利用微电子打印机中的点胶打印功能,在聚对苯二甲酸乙二醇酯(PET)衬底上制备得到基于ZnMn_(2)O_(4)-CNTs平面超级电容器。结果表明,采用该方法制备得到的ZnMn_(2)O_(4)-CNTs平面超级电容器,由于引入了CNTs,改善了ZnMn_(2)O_(4)的电导率,能展现出更好的性能。在0.023 mA cm^(-2)电流密度下其比电容达到了13.687 mF cm^(-2),在10000圈的循环后,电容保持率高达99.47%,远优于纯ZnMn_(2)O_(4)的电化学性能。展开更多
It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an offi ce printer. The fi rstever prototype of a liquid-metal printer...It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an offi ce printer. The fi rstever prototype of a liquid-metal printer has been invented and demonstrated by our lab, bringing this goal a key step closer. As part of a continuous endeavor, this work is dedicated to significantly extending such technology to the consumer level by making a very practical desktop liquid-metal printer for society in the near future. Through the industrial design and technical optimization of a series of key technical issues such as working reliability, printing resolution, automatic control, human-machine interface design, software, hardware, and integration between software and hardware, a high-quality personal desktop liquid-metal printer that is ready for mass production in industry was fabricated. Its basic features and important technical mechanisms are explained in this paper, along with demonstrations of several possible consumer end-uses for making functional devices such as li ght-emitting diode(LED) displays. This liquid-metal printer is an automatic, easyto-use, and low-cost personal electronics manufacturing tool with many possible applications. This paper discusses important roles that the new machine may play for a group of emerging needs. The prospective future of this cuttingedge technology is outlined, along with a comparative interpretation of several historical printing methods. This desktop liquid-metal printer is expected to become a basic electronics manufacturing tool for a wide variety of emerging practices in the academic realm, in industry, and in education as well as for individual end-users in the near future.展开更多
文摘近年来,具备可穿戴和柔性功能的便携式电子设备备受关注,对提供其能量的储能器件研究也逐渐成为热点。平面超级电容器具有功率密度高、充放电速率快、循环稳定性好、易于集成等优点,是重要的可穿戴和柔性电子产品的潜在电源。在电极材料中,锰酸锌(ZnMn_(2)O_(4))拥有较高的理论比电容,但存在电导率较差的难题,这影响了其循环稳定性和功率密度。碳纳米管(CNTs)具有优异的长期稳定性和高功率密度,以及较好的电导率,因此可以通过引入CNTs改善ZnMn_(2)O_(4)电导率。微电子打印技术是是一种简便的制备平面超级电容器的新方法。本文采用水热法制备出ZnMn_(2)O_(4)和CNTs复合材料,并且利用微电子打印机中的点胶打印功能,在聚对苯二甲酸乙二醇酯(PET)衬底上制备得到基于ZnMn_(2)O_(4)-CNTs平面超级电容器。结果表明,采用该方法制备得到的ZnMn_(2)O_(4)-CNTs平面超级电容器,由于引入了CNTs,改善了ZnMn_(2)O_(4)的电导率,能展现出更好的性能。在0.023 mA cm^(-2)电流密度下其比电容达到了13.687 mF cm^(-2),在10000圈的循环后,电容保持率高达99.47%,远优于纯ZnMn_(2)O_(4)的电化学性能。
基金supported by the Research Funding of the Chinese Academy of Sciences (KGZD-EW-T04-4)
文摘It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an offi ce printer. The fi rstever prototype of a liquid-metal printer has been invented and demonstrated by our lab, bringing this goal a key step closer. As part of a continuous endeavor, this work is dedicated to significantly extending such technology to the consumer level by making a very practical desktop liquid-metal printer for society in the near future. Through the industrial design and technical optimization of a series of key technical issues such as working reliability, printing resolution, automatic control, human-machine interface design, software, hardware, and integration between software and hardware, a high-quality personal desktop liquid-metal printer that is ready for mass production in industry was fabricated. Its basic features and important technical mechanisms are explained in this paper, along with demonstrations of several possible consumer end-uses for making functional devices such as li ght-emitting diode(LED) displays. This liquid-metal printer is an automatic, easyto-use, and low-cost personal electronics manufacturing tool with many possible applications. This paper discusses important roles that the new machine may play for a group of emerging needs. The prospective future of this cuttingedge technology is outlined, along with a comparative interpretation of several historical printing methods. This desktop liquid-metal printer is expected to become a basic electronics manufacturing tool for a wide variety of emerging practices in the academic realm, in industry, and in education as well as for individual end-users in the near future.