According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuatio...According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.展开更多
We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which on...We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximal1y Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglernent of multiple coherent and squeezing states with desired amplitudes in a reasonable time.展开更多
A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electroni...A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electronic states of the LiCl molecule dissociating into Li (^2S, ^2p, ^3S)+Cl (^2p). The (4)^1∑^+, (3)∏, 1-3^3∑^+, 1-3^3∏, 1,3Δ, ^1,3∑^-, (5)^1∑^+,(4)^3∑^+, (4)^3∏, (4)^3∏ excited states are studied for the first time in theory. Molecular spectroscopic constants .(Re, De,ωe, ωeΧe,Be and αe) have been derived for the 9 bound states (X^1∑^+, (3)^1∑^+, (2)^3∑^+, ^1,3Δ, ^1,3∑^-, (4)^∏, (4)^3∏) with a regular shape, and the spectroscopic constants of ground states X^1 ∑^+ are in good agreement with available experimental and theoretical values. The relative differences between experimental values and our values for Re, De, ωe, ωeΧe, Be and α3 are 1.02%, 0.60%, 1.72%, 9.46%, 2.0%, and 0.75%, respectively. Moreover, vibrational levels of 9 bound states, which have not been investigated experimentally, are computed.展开更多
The system of electrons on liquid helium is an interesting candidate to implement quantum computation, due to the long coherence times of the qubits encoded by the electronic spins. In order to implement the quantum l...The system of electrons on liquid helium is an interesting candidate to implement quantum computation, due to the long coherence times of the qubits encoded by the electronic spins. In order to implement the quantum logic operations between the spins, we propose here a configuration, similarly to the cooled ions in a trap, to couple the distant electrons via manipulating their center of mass (CM) vibrations. First, we show that the electrons could be confined in a common harmonic oscillator potential by using an electrostatic field. Then, with a single current pulse (applied on the micro-electrode below the liquid helium) the distant electronic spins can be coupled simultaneously to the CM mode. Finally, by adiabatically eliminating the CM mode, effective interaction between the distant spins is induced for implementing the desired quantum computing.展开更多
文摘According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.
基金The project partially supported by the National Fundamental Research Program of China under Grant No. 2005CB724508 and National Natural Science Foundation of China under Grant Nos. 60478029, 10575040, and 90503010 Acknowledgments The authors thank Prof. Ying Wu for many enlighten- ing discussions.
文摘We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximal1y Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglernent of multiple coherent and squeezing states with desired amplitudes in a reasonable time.
文摘A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electronic states of the LiCl molecule dissociating into Li (^2S, ^2p, ^3S)+Cl (^2p). The (4)^1∑^+, (3)∏, 1-3^3∑^+, 1-3^3∏, 1,3Δ, ^1,3∑^-, (5)^1∑^+,(4)^3∑^+, (4)^3∏, (4)^3∏ excited states are studied for the first time in theory. Molecular spectroscopic constants .(Re, De,ωe, ωeΧe,Be and αe) have been derived for the 9 bound states (X^1∑^+, (3)^1∑^+, (2)^3∑^+, ^1,3Δ, ^1,3∑^-, (4)^∏, (4)^3∏) with a regular shape, and the spectroscopic constants of ground states X^1 ∑^+ are in good agreement with available experimental and theoretical values. The relative differences between experimental values and our values for Re, De, ωe, ωeΧe, Be and α3 are 1.02%, 0.60%, 1.72%, 9.46%, 2.0%, and 0.75%, respectively. Moreover, vibrational levels of 9 bound states, which have not been investigated experimentally, are computed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11204249,11174373the National Fundamental Research Program of China under Grant No.2010CB923104
文摘The system of electrons on liquid helium is an interesting candidate to implement quantum computation, due to the long coherence times of the qubits encoded by the electronic spins. In order to implement the quantum logic operations between the spins, we propose here a configuration, similarly to the cooled ions in a trap, to couple the distant electrons via manipulating their center of mass (CM) vibrations. First, we show that the electrons could be confined in a common harmonic oscillator potential by using an electrostatic field. Then, with a single current pulse (applied on the micro-electrode below the liquid helium) the distant electronic spins can be coupled simultaneously to the CM mode. Finally, by adiabatically eliminating the CM mode, effective interaction between the distant spins is induced for implementing the desired quantum computing.