Objective: The aim of our study was to assess and compare the potential dosimetric advantages and drawbacks of photon beams and electron beams as a boost for the tumor bed in superficial and deep seated early-stage b...Objective: The aim of our study was to assess and compare the potential dosimetric advantages and drawbacks of photon beams and electron beams as a boost for the tumor bed in superficial and deep seated early-stage breast cancer. Methods: We planned CTs of 10 women with early breast cancer underwent breast conservative surgery were selected. Tumor bed was defined as superficial and deep with a cut of point 4 cm, those with less than 4 cm were defined as superficial tumors representing 4 patients and those with depth of 4 cm or more were classified as deep tumors representing 6 patients. The clinical target volume (C'I'V) was defined as the area of architectural .distortion surrounded by surgical clips. The plan- ning target volume (PTV) was the C'I'V plus margin 1 cm. A dose of 10 Gy.in 2 Gy fractions was given concurrently at the last week of treatment. Organs at risk (OARs) were heart, lungs, contra-lateral breast and a 5 mm thick skin segment of the breast surface. Dose volume histograms were defined to quantify the quality of concurrent treatment plans assessing target coverage and sparing OARs. The following treatment techniques were assessed: photon beam with 3D-conformal technique and a single electron beam. Results: For superficial tumors better coverage for CTV and P'I'V with good homogeneity with better CI was found for the 3D conformal radiotherapy (3DCRT) but with no significant planning objectives over electron beam. For deep tumors, the 3DCRT met the planning objectives for C'I'V, PTV with better coverage and fewer hot spots with better homogeneity and CI. For superficial tumors, OARs were spared by both techniques with better sparing for the electron beam where as for deep tumors also OARs were well spared by both techniques. Conclusion: Boosting the tumor bed in early- stage breast cancer with optimized photon may be preferred to electron beam for both superficial and deep tumors. The OARs dose sparing effect may allow for a potential long-term toxicity risk reduction and better cosmesis.展开更多
Objective: The purpose of this study was to present the dosimetric study and evaluation the dose delivered to the skin tumor by using diode detector with total skin electron therapy (TSET). Methods: The total skin...Objective: The purpose of this study was to present the dosimetric study and evaluation the dose delivered to the skin tumor by using diode detector with total skin electron therapy (TSET). Methods: The total skin electron irradiation (TSEI) technique was used to treat ten patients with histological confirmed mycosis fungoides according to the Stanford staging system at the Radiotherapy Department, National Cancer Institute, Cairo University, Egypt. High dose rate electron beams with low electron energy 5 MeV from a Siemens linear accelerator were used for treatment. Diodes were calibrated at TSET distance 300 cm and field size (35 × 35) cm^2. Results: The result of diodes measurements showed the dose to flat surface of the body was within :1:10 % from the prescribed dose. Special areas of the body such as the perineum & eyelid showed large deviation up to 30% variation from the prescription dose. Conclusion: The diode results of this study will be used as a quality assurance check for all new patients treated with TSET and to compare it to the prescribed dose delivered to the patients. It is recommends to evaluate the diodes measurements for all patients throughout the full treatment cycle and to identify individually the boost dose areas.展开更多
文摘Objective: The aim of our study was to assess and compare the potential dosimetric advantages and drawbacks of photon beams and electron beams as a boost for the tumor bed in superficial and deep seated early-stage breast cancer. Methods: We planned CTs of 10 women with early breast cancer underwent breast conservative surgery were selected. Tumor bed was defined as superficial and deep with a cut of point 4 cm, those with less than 4 cm were defined as superficial tumors representing 4 patients and those with depth of 4 cm or more were classified as deep tumors representing 6 patients. The clinical target volume (C'I'V) was defined as the area of architectural .distortion surrounded by surgical clips. The plan- ning target volume (PTV) was the C'I'V plus margin 1 cm. A dose of 10 Gy.in 2 Gy fractions was given concurrently at the last week of treatment. Organs at risk (OARs) were heart, lungs, contra-lateral breast and a 5 mm thick skin segment of the breast surface. Dose volume histograms were defined to quantify the quality of concurrent treatment plans assessing target coverage and sparing OARs. The following treatment techniques were assessed: photon beam with 3D-conformal technique and a single electron beam. Results: For superficial tumors better coverage for CTV and P'I'V with good homogeneity with better CI was found for the 3D conformal radiotherapy (3DCRT) but with no significant planning objectives over electron beam. For deep tumors, the 3DCRT met the planning objectives for C'I'V, PTV with better coverage and fewer hot spots with better homogeneity and CI. For superficial tumors, OARs were spared by both techniques with better sparing for the electron beam where as for deep tumors also OARs were well spared by both techniques. Conclusion: Boosting the tumor bed in early- stage breast cancer with optimized photon may be preferred to electron beam for both superficial and deep tumors. The OARs dose sparing effect may allow for a potential long-term toxicity risk reduction and better cosmesis.
文摘Objective: The purpose of this study was to present the dosimetric study and evaluation the dose delivered to the skin tumor by using diode detector with total skin electron therapy (TSET). Methods: The total skin electron irradiation (TSEI) technique was used to treat ten patients with histological confirmed mycosis fungoides according to the Stanford staging system at the Radiotherapy Department, National Cancer Institute, Cairo University, Egypt. High dose rate electron beams with low electron energy 5 MeV from a Siemens linear accelerator were used for treatment. Diodes were calibrated at TSET distance 300 cm and field size (35 × 35) cm^2. Results: The result of diodes measurements showed the dose to flat surface of the body was within :1:10 % from the prescribed dose. Special areas of the body such as the perineum & eyelid showed large deviation up to 30% variation from the prescription dose. Conclusion: The diode results of this study will be used as a quality assurance check for all new patients treated with TSET and to compare it to the prescribed dose delivered to the patients. It is recommends to evaluate the diodes measurements for all patients throughout the full treatment cycle and to identify individually the boost dose areas.