Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is near...Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface. The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250um. Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.展开更多
A Cu-50Cr alloy was treated by the high current pulsed electron beam(HCPEB)at 20 and 30 ke V with pulse numbers ranging from 1 to 100.Surface morphologies and microstructures of specimens before and after the treatmen...A Cu-50Cr alloy was treated by the high current pulsed electron beam(HCPEB)at 20 and 30 ke V with pulse numbers ranging from 1 to 100.Surface morphologies and microstructures of specimens before and after the treatments were investigated by employing scanning electron microscopy and X-ray diffraction.Results show that the HCPEB technique is able to induce remarkable surface modifications for the Cu-50Cr alloy.Cracks in Cr phases appear even after one-pulse treatment and their density always increases with the pulse number.Formation reason for these cracks is attributed to quasi-static thermal stresses accumulated along the specimen surface.Craters with typical morphologies are formed due to the dynamic thermal field induced by the HCPEB and they are found to prefer the sites near cracks or boundaries between neighboring Cr phases.Another microstructural characteristic produced by the HCPEB is the fine Cr spheroids,which are determined to be due to occurrence of liquid phase separation in the Cu-50Cr alloy.Finally,a general microstructural evolution profile that incorporates various HCPEB-induced surface features is tentatively outlined.展开更多
文摘Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface. The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250um. Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.
基金supported by the National Natural Science Foundation of China(Grant Nos.51101177,51401040,51171146 and 51171216)the Natural Science Foundation of Chongqing(Grant No.CSTC2012JJA245)
文摘A Cu-50Cr alloy was treated by the high current pulsed electron beam(HCPEB)at 20 and 30 ke V with pulse numbers ranging from 1 to 100.Surface morphologies and microstructures of specimens before and after the treatments were investigated by employing scanning electron microscopy and X-ray diffraction.Results show that the HCPEB technique is able to induce remarkable surface modifications for the Cu-50Cr alloy.Cracks in Cr phases appear even after one-pulse treatment and their density always increases with the pulse number.Formation reason for these cracks is attributed to quasi-static thermal stresses accumulated along the specimen surface.Craters with typical morphologies are formed due to the dynamic thermal field induced by the HCPEB and they are found to prefer the sites near cracks or boundaries between neighboring Cr phases.Another microstructural characteristic produced by the HCPEB is the fine Cr spheroids,which are determined to be due to occurrence of liquid phase separation in the Cu-50Cr alloy.Finally,a general microstructural evolution profile that incorporates various HCPEB-induced surface features is tentatively outlined.