This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are ...This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are discussed in this paper. Compared with electronic computer, it can work at some special environment, such as high temperature and high pressure Consequently, the heat computer is not only a new special computer, but also a lot of new heat computation cell or device could be invented in the future. The thermal computer and control device are a new thermal energy machines powered by heat energy, it is significant for the environmental protection, energy usage and developed and new discipline development.展开更多
The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of t...The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of the major components in the heat sink is the heat spreader which must be designed to effectively conduct the heat dissipated from the chip to a system of fins or extended surfaces for convective heat transfer to a flow of coolant. The heat spreader design must provide the capability to dissipate the thermal energy generated by the chip. However, the design of the heat spreader is also dependent on the convection characteristics of the fins within the heat sink, as well the material and geometry of the heat spreader. This paper focuses on the optimization of heat spreaders in a heat sink for safe and efficient performance of electronic circuits. The results of the study show that, for air-cooled electronics, the convective effects may dominate the thermal transport performance of the heat spreader in the heat sink.展开更多
基金Acknowledgment: The paper was supported by the Nature Science Foundation of China (No. 50876034), Ph.D. Science Foundation of Ministry. of Education of China (No. 20040487039): Key Discipline Construction Foundation of Shanghai Education Commission (No. J5180|): Science Foundation of Shanghai Education Commission (No. 08ZY79) SSPU Science Foundation (No. DZ207004).
文摘This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are discussed in this paper. Compared with electronic computer, it can work at some special environment, such as high temperature and high pressure Consequently, the heat computer is not only a new special computer, but also a lot of new heat computation cell or device could be invented in the future. The thermal computer and control device are a new thermal energy machines powered by heat energy, it is significant for the environmental protection, energy usage and developed and new discipline development.
文摘The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of the major components in the heat sink is the heat spreader which must be designed to effectively conduct the heat dissipated from the chip to a system of fins or extended surfaces for convective heat transfer to a flow of coolant. The heat spreader design must provide the capability to dissipate the thermal energy generated by the chip. However, the design of the heat spreader is also dependent on the convection characteristics of the fins within the heat sink, as well the material and geometry of the heat spreader. This paper focuses on the optimization of heat spreaders in a heat sink for safe and efficient performance of electronic circuits. The results of the study show that, for air-cooled electronics, the convective effects may dominate the thermal transport performance of the heat spreader in the heat sink.