There has been growing research interest in the use of molybdenum disulfide in the fields of optoelectronics and energy harvesting devices, by virtue of its indirect-to-direct band gap tunability. However, obtaining l...There has been growing research interest in the use of molybdenum disulfide in the fields of optoelectronics and energy harvesting devices, by virtue of its indirect-to-direct band gap tunability. However, obtaining large area thin films of MoS2 for future device applications still remains a challenge. In the present study, the amounts of the precursors (S and MOO3) were varied systematically in order to optimize the growth of highly crystalline and large area MoS2 layers by the chemical vapor deposition method. Careful control of the amounts of precursors was found to the key factor in the synthesis of large area highly crystalline flakes. The thickness of the layers was confirmed by Raman spectroscopy and atomic force microscopy. The optical properties and chemical composition were studied by photoluminescence (PL) and X-ray photoelectron spectroscopy. The emergence of strong direct excitonic emissions at 1.82 eV (A-exciton, with a normalized PL intensity of -55 × 10^3) and 1.98 eV (B-exciton, with a normalized PL intensity of -5 × 10^3) of the sample at room temperature clearly indicates the high luminescence quantum efficiency. The mobility of the films was found to be 0.09 cm^2/(V.s) at room temperature. This study provides a method for the controlled synthesis of high-quality two-dimensional (2D) transition metal dichalcogenide materials, useful for applications in nanodevices, optoelectronics and solar energv conversion.展开更多
Charge transport through single molecular neutral mono- and di-cobalt(Ⅱ) complexes with re-conjugated macromolecular wire was investigated. Scanning tunnelling spectroscopy (STS) studies revealed that the mono-co...Charge transport through single molecular neutral mono- and di-cobalt(Ⅱ) complexes with re-conjugated macromolecular wire was investigated. Scanning tunnelling spectroscopy (STS) studies revealed that the mono-cobalt(Ⅱ) complex showed a pronounced rectifying effect with a large rectification ratio and finely featured NDR peaks, while the di-cobalt(Ⅱ) complex showed a relatively symmetric electron transport without clear NDR peaks. The results are explained based on the dipolar and electronic effects.展开更多
Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space char...Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space charge storage in AMIBs has been less investigated experimentally,mostly due to the complicated electrochemical behavior and lack of proper characterization techniques.Here,we use operando magnetometry to verify that in FeSe_(2)AMIBs,abundant Li^(+)/Na^(+)/K^(+)(M^(+))can be stored at M_(2)Se phase while electrons accumulate at Fe nanoparticles,forming interfacial space charge layers.Magnetic and dynamics tests further demonstrate that with increasing ionic radius from Li^(+),Na^(+)to K^(+),the reaction kinetics can be hindered,resulting in limited Fe formation and reduced space charge storage capacity.This work lays solid foundation for studying the complex interfacial effect in electrochemical processes and designing advanced energy storage devices with substantial capacity and considerable power density.展开更多
文摘There has been growing research interest in the use of molybdenum disulfide in the fields of optoelectronics and energy harvesting devices, by virtue of its indirect-to-direct band gap tunability. However, obtaining large area thin films of MoS2 for future device applications still remains a challenge. In the present study, the amounts of the precursors (S and MOO3) were varied systematically in order to optimize the growth of highly crystalline and large area MoS2 layers by the chemical vapor deposition method. Careful control of the amounts of precursors was found to the key factor in the synthesis of large area highly crystalline flakes. The thickness of the layers was confirmed by Raman spectroscopy and atomic force microscopy. The optical properties and chemical composition were studied by photoluminescence (PL) and X-ray photoelectron spectroscopy. The emergence of strong direct excitonic emissions at 1.82 eV (A-exciton, with a normalized PL intensity of -55 × 10^3) and 1.98 eV (B-exciton, with a normalized PL intensity of -5 × 10^3) of the sample at room temperature clearly indicates the high luminescence quantum efficiency. The mobility of the films was found to be 0.09 cm^2/(V.s) at room temperature. This study provides a method for the controlled synthesis of high-quality two-dimensional (2D) transition metal dichalcogenide materials, useful for applications in nanodevices, optoelectronics and solar energv conversion.
基金the financial supports of the National Science Foundationthe NSF MRSEC program at the University of Chicago
文摘Charge transport through single molecular neutral mono- and di-cobalt(Ⅱ) complexes with re-conjugated macromolecular wire was investigated. Scanning tunnelling spectroscopy (STS) studies revealed that the mono-cobalt(Ⅱ) complex showed a pronounced rectifying effect with a large rectification ratio and finely featured NDR peaks, while the di-cobalt(Ⅱ) complex showed a relatively symmetric electron transport without clear NDR peaks. The results are explained based on the dipolar and electronic effects.
基金supported by the National Natural Science Foundation of China(22179066,51804173,and 11674186)the National Science Foundation of Shandong Province(ZR2020MA073)+2 种基金the Science and Technology Board of Qingdao(16-5-1-2jch)Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery grant RGPIN-04178the Canada First Research Excellence Fund。
文摘Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space charge storage in AMIBs has been less investigated experimentally,mostly due to the complicated electrochemical behavior and lack of proper characterization techniques.Here,we use operando magnetometry to verify that in FeSe_(2)AMIBs,abundant Li^(+)/Na^(+)/K^(+)(M^(+))can be stored at M_(2)Se phase while electrons accumulate at Fe nanoparticles,forming interfacial space charge layers.Magnetic and dynamics tests further demonstrate that with increasing ionic radius from Li^(+),Na^(+)to K^(+),the reaction kinetics can be hindered,resulting in limited Fe formation and reduced space charge storage capacity.This work lays solid foundation for studying the complex interfacial effect in electrochemical processes and designing advanced energy storage devices with substantial capacity and considerable power density.