First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approxima...First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.展开更多
The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, an...The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.展开更多
The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti b...The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures.展开更多
An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a st...An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.展开更多
The structural stabilities and electronic structures of Ga atomic chains are studied by the first-principles plane wave pseudopotential method based on the density functional theory. The present calculations show that...The structural stabilities and electronic structures of Ga atomic chains are studied by the first-principles plane wave pseudopotential method based on the density functional theory. The present calculations show that gallium can form planar chains in linear-, zigzag- and ladder-form one-dimensional structures. The most stable one among the studied structures is the zigzag chain with a unit cell rather close to equilateral triangles with four nearest neighbors, and all the other structures are metastable. The relative structural stability, the energy bands and the charge densities are discussed based on the ab initio calculations and the Jahn-Teller effect.展开更多
Study of geometries of 16 possible isomers for C76N2 based on C78(C2v) by intermediate neglect of differential overlap (INDO) series of methods indicated that the most stable geometry 25,78-C76N2 where two nitrogen at...Study of geometries of 16 possible isomers for C76N2 based on C78(C2v) by intermediate neglect of differential overlap (INDO) series of methods indicated that the most stable geometry 25,78-C76N2 where two nitrogen atoms substitute two apexes C(25) and C(78) near the shortest X axis and Y axis formed by two hexagons and a pentagon. Electronic structures and spectra of C76N2 were investigated. The reason for the red-shift for absorptions of C76N2 compared with that of C78(C2v) is discussed.展开更多
In order to search for high energy density materials,various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed.Density functional theory was employed to investigate the relationships betwe...In order to search for high energy density materials,various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed.Density functional theory was employed to investigate the relationships between the structures and properties.The calculated results indicated that the properties of these designed compounds were influenced by the energetic groups and heterocyclic substituents.The-N3 energetic group was found to be the most effective substituent to improve the heats of formation of the designed compounds while the tetrazole ring/-C(NO_(2))_(3) group contributed much to the values of detonation properties.The analysis of bond orders and bond dissociation energies showed that the addition of-NHNH2,-NHNO_(2),-CH(NO_(2))_(3) and-C(NO_(2))_(3) groups would decrease the bond dissociation energies remarkably.Compounds A8,B8,C8,D8,E8,and F8 were finally screened as the potential candidates for high energy density materials since these compounds possess excellent detonation properties and acceptable thermal stabilities.Additionally,the electronic structures of the screened compounds were calculated.展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
By using first-principles calculations,we have systematically investigated the structural stability and electronic properties of a single oxygen atom adsorbed on the surface of foursquare Cu nanowires for a wide range...By using first-principles calculations,we have systematically investigated the structural stability and electronic properties of a single oxygen atom adsorbed on the surface of foursquare Cu nanowires for a wide range of adsorption sites.In view of binding energy maximization,we found that the long bridge site at the edge of the Cu nanowires is the most stable site for oxygen adsorption,which is always slightly energetically favorable compared with the hollow site at the surface.The electron transferring from Cu atoms to O adatom and a significant polarization indicate the O-Cu chemical bond,showing some degree of ionic character.In addition,the hybridization between O-2p and Cu-3d states implies the O-Cu bond which also shows some degree of covalence character.The main factors which affect the oxygen preferred adsorption site are analyzed from the local geometrical configurations and electronic properties.展开更多
基金Project(u0837601)supported by the National Natural Science Foundation of China
文摘First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.
基金ACKNOWLEDGMENTS This work was supported by the Doctoral Discipline Foundation of the Ministry of Education of China (No.20070533118) and the National Natural Science Foundation of China (No.50871124). The authors acknowledge Dr. Y. Z. Nie for his useful discussion in calculations.
文摘The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.
基金International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)National Natural Science Foundation of China(Nos.51674226,51574207,51574206,51274175)+1 种基金International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)
文摘The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures.
文摘An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.10374076) and the Natural Science Foundation of Fujian Province (No.E0320001).
文摘The structural stabilities and electronic structures of Ga atomic chains are studied by the first-principles plane wave pseudopotential method based on the density functional theory. The present calculations show that gallium can form planar chains in linear-, zigzag- and ladder-form one-dimensional structures. The most stable one among the studied structures is the zigzag chain with a unit cell rather close to equilateral triangles with four nearest neighbors, and all the other structures are metastable. The relative structural stability, the energy bands and the charge densities are discussed based on the ab initio calculations and the Jahn-Teller effect.
文摘Study of geometries of 16 possible isomers for C76N2 based on C78(C2v) by intermediate neglect of differential overlap (INDO) series of methods indicated that the most stable geometry 25,78-C76N2 where two nitrogen atoms substitute two apexes C(25) and C(78) near the shortest X axis and Y axis formed by two hexagons and a pentagon. Electronic structures and spectra of C76N2 were investigated. The reason for the red-shift for absorptions of C76N2 compared with that of C78(C2v) is discussed.
基金This work was supported by the National Natural Science Foundation of China(No.11602121)the Program for Scientific Research Innovation Team in Colleges and Universities of Ji’nan(No.2018GXRC006).
文摘In order to search for high energy density materials,various 4,8-dihydrodifurazano[3,4-b,e]pyrazine based energetic materials were designed.Density functional theory was employed to investigate the relationships between the structures and properties.The calculated results indicated that the properties of these designed compounds were influenced by the energetic groups and heterocyclic substituents.The-N3 energetic group was found to be the most effective substituent to improve the heats of formation of the designed compounds while the tetrazole ring/-C(NO_(2))_(3) group contributed much to the values of detonation properties.The analysis of bond orders and bond dissociation energies showed that the addition of-NHNH2,-NHNO_(2),-CH(NO_(2))_(3) and-C(NO_(2))_(3) groups would decrease the bond dissociation energies remarkably.Compounds A8,B8,C8,D8,E8,and F8 were finally screened as the potential candidates for high energy density materials since these compounds possess excellent detonation properties and acceptable thermal stabilities.Additionally,the electronic structures of the screened compounds were calculated.
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.
基金supported by the National Natural Science Foundation of China (Grant No. 51071098)the State Key Development for Basic Research of China (Grant No. 2010CB631002)
文摘By using first-principles calculations,we have systematically investigated the structural stability and electronic properties of a single oxygen atom adsorbed on the surface of foursquare Cu nanowires for a wide range of adsorption sites.In view of binding energy maximization,we found that the long bridge site at the edge of the Cu nanowires is the most stable site for oxygen adsorption,which is always slightly energetically favorable compared with the hollow site at the surface.The electron transferring from Cu atoms to O adatom and a significant polarization indicate the O-Cu chemical bond,showing some degree of ionic character.In addition,the hybridization between O-2p and Cu-3d states implies the O-Cu bond which also shows some degree of covalence character.The main factors which affect the oxygen preferred adsorption site are analyzed from the local geometrical configurations and electronic properties.