Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entangl...Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.展开更多
We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formali...We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.展开更多
We propose to use a set of averaged entropies, the multiple entropy measures (MEMS), to partiallyquantify quantum entanglement of multipartite quantum state.The MEMS is vector-like with m = [N/2] components:[S_1, S_2,...We propose to use a set of averaged entropies, the multiple entropy measures (MEMS), to partiallyquantify quantum entanglement of multipartite quantum state.The MEMS is vector-like with m = [N/2] components:[S_1, S_2,..., S_m], and the i-th component S_i is the geometric mean of i-qubits partial entropy of the system.The S_imeasures how strong an arbitrary i qubits from the system are correlated with the rest of the system.It satisfies theconditions for a good entanglement measure.We have analyzed the entanglement properties of the GHZ-state, theW-states, and cluster-states under MEMS.展开更多
We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously intera...We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.展开更多
We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward c...We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward classical bits, the preparation of the original state can be successfully realized with the probability 1/2, the necessary classical communication cost is 0.5 bit on average. If the state to be prepared belongs to some special states, the success probability of preparation can achieve 1 after consuming one extra bit on average. We then generalize this scheme to the case that the quantum channels consist of two non-maximally entangled states.展开更多
This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense codi...This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense coding,and illustrates the fact that this method also provides theoretical basis for establishing corresponding knotted pictures.展开更多
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement...We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.展开更多
Based on the algebraic entanglement measure proposed [G. Vidal et al., Phys. Rev. A 65 (2002) 032314],we study the entanglement evolution of both pure quantum states and mixed ones of 2-qutrit system in a symmetrybrok...Based on the algebraic entanglement measure proposed [G. Vidal et al., Phys. Rev. A 65 (2002) 032314],we study the entanglement evolution of both pure quantum states and mixed ones of 2-qutrit system in a symmetrybroken environment consisting of a fermionic bath. Entanglement of states will decrease or remain constant under the influence of environment, and the class of states which remain unchanged has been found out.展开更多
We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase ...We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase telegraph noise. We show that although the noise has an apparent suppressing effect on the evolution of the entropies of the qubit and the field and also on the entanglement in the system, the entropy exchange between the qubit and the field is independent of it during the time evolution of the system.展开更多
We derive a new differential formula about a kind of product of polynomials and then apply it to analyze some properties of multi-electron state "related to Laughlin wave function". The entangled state representatio...We derive a new differential formula about a kind of product of polynomials and then apply it to analyze some properties of multi-electron state "related to Laughlin wave function". The entangled state representation for describing electrons in uniform magnetic field is used.展开更多
A scheme is presented for the generation of entangled states for two atoms trapped in two distant cavities. In the scheme each atom is resonantly coupled with the respective cavity mode and driven by a strong classica...A scheme is presented for the generation of entangled states for two atoms trapped in two distant cavities. In the scheme each atom is resonantly coupled with the respective cavity mode and driven by a strong classical field. The detection of a photon decaying from the cavities and passing through a beam-splitter collapses the atoms to an entangled state. The required atom-field interaction time is very short and thus the decoherence effect is suppressed. Our scheme is within the reach of presently available cavity QED techniques.展开更多
By using the density matrix renormalization group technique, the phase diagram of the half-tilting extended Hubbard model is investigated. The conventional order parameter, the two-site entanglement entropy, and the b...By using the density matrix renormalization group technique, the phase diagram of the half-tilting extended Hubbard model is investigated. The conventional order parameter, the two-site entanglement entropy, and the block- block entanglement entropy are analyzed in detail. According to the numerical results, in the weak coupling region, an intermediate bond-order-wave (BOW) phase is shown to exist indeed between the charge-density-wave (CDW) and the spin-density-wave (SDW) phases. The critical phase transition points are determined by the singularity of the first order derivative of two-site entanglement entropy. In strong coupling region, a direct phase transition occurs from SDW phase to CDW phase, and shows discontinuous (first order) character accompanied with energy level crossing. The numerical results support the phase diagram proposed previously by some authors Sengupta et al., (2002); Sandvik et al., (2004); Zhang, (2004). Therefore, the quantum entanglement is a sensitive tool to describe quantum phase transitions in strongly correlated electron systems.展开更多
Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found t...Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found that with the cavity dissipation, the steady entanglement between the two qubits can be achieved. The two qubits being initially in the separable and most mixed state can be easily induced to a steady entangled state, and the relative difference of the couplings can be used to enhance the steady entanglement between the two charge qubits.展开更多
We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction...We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.展开更多
A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much b...A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.展开更多
We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU...We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU(1,1) coherent state composed of the two-mode unitary phase operator e^i also leads to a new phase state in two-mode Fock space, e^i is diagonalized in the ESR.展开更多
A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atom...A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atomicspontaneous emission is suppressed.The scheme is simple.It does not need to adjust the interaction time accurately,anddoes not need to prepare the cavity field in one-photon state.Numerical simulation shows that the successful probabilityof the scheme increases with the increasing of the atom number.展开更多
We propose a scheme of generating multi-component entangled coherent states of cavity fields. In this scheme, the atoms pass through cavities one by one, simultaneously driven by a strong classical field in each cavit...We propose a scheme of generating multi-component entangled coherent states of cavity fields. In this scheme, the atoms pass through cavities one by one, simultaneously driven by a strong classical field in each cavity. Then the detection of the atomic states collapses the cavity fields onto multi-component entangled coherent states. It is shown that, with a judicious choice of the parameters of the classical field, we can conditionally produce macroscopic multi-dimensional maximal entanglement for the cavity modes.展开更多
We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubitscoupled collectively to a zero temperature,dissipative resonator and find an unusual feather that the competing ofcreation...We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubitscoupled collectively to a zero temperature,dissipative resonator and find an unusual feather that the competing ofcreation and annihilation of entanglement can lead to entanglement increasing,sudden death and revival.We alsocalculate the dependence of the death time on the initial state of the system.展开更多
文摘Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.
文摘We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10775076,10874098 (GLL)the 973 Program 2006CB921106 (XZ)+1 种基金 the SRFDP Program of Education Ministry of China under Gtant No.20060003048 the Fundamental Research Funds for the Central Universities,DC10040119 (DL)
文摘We propose to use a set of averaged entropies, the multiple entropy measures (MEMS), to partiallyquantify quantum entanglement of multipartite quantum state.The MEMS is vector-like with m = [N/2] components:[S_1, S_2,..., S_m], and the i-th component S_i is the geometric mean of i-qubits partial entropy of the system.The S_imeasures how strong an arbitrary i qubits from the system are correlated with the rest of the system.It satisfies theconditions for a good entanglement measure.We have analyzed the entanglement properties of the GHZ-state, theW-states, and cluster-states under MEMS.
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.06jj50014Key Project Foundation of the Education Commission of Hunan Province under Grant No.06A055the Young Core Teachers Foundation of Hunan Provincial Education Department
文摘We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.
基金the Program for New Century Excellent Talents at Universities of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science-Technology Fund of Auhui Province for Outstanding Youth uniter Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006AB354
文摘We propose a remote state preparation (RSP) scheme of three-particle Greenberger Horne-Zeilinger (GHZ) class states, where quantum channels are composed of two maximally entangled states. With the aid of forward classical bits, the preparation of the original state can be successfully realized with the probability 1/2, the necessary classical communication cost is 0.5 bit on average. If the state to be prepared belongs to some special states, the success probability of preparation can achieve 1 after consuming one extra bit on average. We then generalize this scheme to the case that the quantum channels consist of two non-maximally entangled states.
文摘This article discusses the role of covariance correlation tensor in the establishment of the criterion of quantum entanglement. It gives a simple example to show the powerfulness in the treatment of quantum dense coding,and illustrates the fact that this method also provides theoretical basis for establishing corresponding knotted pictures.
文摘We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.
文摘Based on the algebraic entanglement measure proposed [G. Vidal et al., Phys. Rev. A 65 (2002) 032314],we study the entanglement evolution of both pure quantum states and mixed ones of 2-qutrit system in a symmetrybroken environment consisting of a fermionic bath. Entanglement of states will decrease or remain constant under the influence of environment, and the class of states which remain unchanged has been found out.
文摘We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase telegraph noise. We show that although the noise has an apparent suppressing effect on the evolution of the entropies of the qubit and the field and also on the entanglement in the system, the entropy exchange between the qubit and the field is independent of it during the time evolution of the system.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056
文摘We derive a new differential formula about a kind of product of polynomials and then apply it to analyze some properties of multi-electron state "related to Laughlin wave function". The entangled state representation for describing electrons in uniform magnetic field is used.
基金National Natural Science Foundation of China under Grant No.10674025the Funds from Fuzhou University
文摘A scheme is presented for the generation of entangled states for two atoms trapped in two distant cavities. In the scheme each atom is resonantly coupled with the respective cavity mode and driven by a strong classical field. The detection of a photon decaying from the cavities and passing through a beam-splitter collapses the atoms to an entangled state. The required atom-field interaction time is very short and thus the decoherence effect is suppressed. Our scheme is within the reach of presently available cavity QED techniques.
基金Supported by the National Natural Science Foundation of China under Grant No.11047160the National Basic Research Program of China under Grant No.2009CB939901the Foundation of Tianjin Polytechnic University under Grant No.029289
文摘By using the density matrix renormalization group technique, the phase diagram of the half-tilting extended Hubbard model is investigated. The conventional order parameter, the two-site entanglement entropy, and the block- block entanglement entropy are analyzed in detail. According to the numerical results, in the weak coupling region, an intermediate bond-order-wave (BOW) phase is shown to exist indeed between the charge-density-wave (CDW) and the spin-density-wave (SDW) phases. The critical phase transition points are determined by the singularity of the first order derivative of two-site entanglement entropy. In strong coupling region, a direct phase transition occurs from SDW phase to CDW phase, and shows discontinuous (first order) character accompanied with energy level crossing. The numerical results support the phase diagram proposed previously by some authors Sengupta et al., (2002); Sandvik et al., (2004); Zhang, (2004). Therefore, the quantum entanglement is a sensitive tool to describe quantum phase transitions in strongly correlated electron systems.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374007
文摘Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found that with the cavity dissipation, the steady entanglement between the two qubits can be achieved. The two qubits being initially in the separable and most mixed state can be easily induced to a steady entangled state, and the relative difference of the couplings can be used to enhance the steady entanglement between the two charge qubits.
基金Supported by Jiangsu Planned Projects for Postdoctoral Research Funds of China under Grant No.0702024BChina Postdoctoral Science Foundation Funded Project under Grant No.20080430171
文摘We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20103401110007the National Natural Science Foundation of China under Grant Nos.10975001 and 10874122+1 种基金the Talent Foundation of High Education of Anhui Province for Outstanding Youth under Grant No.2009SQRZ018the Science Research Foundation of Anhui University for Youth under Grant No.2009QN017B
文摘A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.
文摘We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU(1,1) coherent state composed of the two-mode unitary phase operator e^i also leads to a new phase state in two-mode Fock space, e^i is diagonalized in the ESR.
基金Supported by the Science Foundation of Educational Committee of Fujian Province under Grant No.JB09011
文摘A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atomicspontaneous emission is suppressed.The scheme is simple.It does not need to adjust the interaction time accurately,anddoes not need to prepare the cavity field in one-photon state.Numerical simulation shows that the successful probabilityof the scheme increases with the increasing of the atom number.
基金National Natural Science Foundation of China under Grant Nos.10575119,10235030,and 10604025
文摘We propose a scheme of generating multi-component entangled coherent states of cavity fields. In this scheme, the atoms pass through cavities one by one, simultaneously driven by a strong classical field in each cavity. Then the detection of the atomic states collapses the cavity fields onto multi-component entangled coherent states. It is shown that, with a judicious choice of the parameters of the classical field, we can conditionally produce macroscopic multi-dimensional maximal entanglement for the cavity modes.
基金Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 10J J6010the Key Project Foundation and the Youngth Foundation of Education Commission of Hunan Province of China under Grant Nos. 10A095, 09B079the Youth Foundation from Huaihua University of China under Grant No. HHUQ2009-09
文摘We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubitscoupled collectively to a zero temperature,dissipative resonator and find an unusual feather that the competing ofcreation and annihilation of entanglement can lead to entanglement increasing,sudden death and revival.We alsocalculate the dependence of the death time on the initial state of the system.