低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe...低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe/Pt(111)表面只存在顶位吸附;当暴露量大于0.4L,除了顶位吸附外,桥位吸附开始出现;顶位吸附分子的C-O键振动峰随着暴露量的增加不断向高波数方向偏移。退火温度影响Pt/Fe/Pt(111)表面CO的吸附形式,低于255K时,顶位吸附分子的脱附速率大于桥位吸附分子;高于255 K时,桥位吸附分子的脱附速率较大,并先于顶位吸附的CO从表面完全脱附,其完全脱附温度比Pt(111)表面低50 K。展开更多
文摘低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe/Pt(111)表面只存在顶位吸附;当暴露量大于0.4L,除了顶位吸附外,桥位吸附开始出现;顶位吸附分子的C-O键振动峰随着暴露量的增加不断向高波数方向偏移。退火温度影响Pt/Fe/Pt(111)表面CO的吸附形式,低于255K时,顶位吸附分子的脱附速率大于桥位吸附分子;高于255 K时,桥位吸附分子的脱附速率较大,并先于顶位吸附的CO从表面完全脱附,其完全脱附温度比Pt(111)表面低50 K。