A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic ...A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.展开更多
Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulabl...Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.展开更多
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(Grant No. 10625419)the National Natural Science Foundation of China(Grant Nos. 90922033 and 10934008)+1 种基金the Ministry of Science and Technology of China (Grant Nos.2012CB932900 and 2013CB933401)the Chinese Academy of Sciences,China,the DFG and the state of Saxony-Anhalt,Germany
文摘A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.
基金supported by the National Natural Science Foundation of China(21901133,22171155 and 22071126)the State Key Laboratory of Fine Chemicals(KF1905)。
文摘Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.