The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, l...The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, low-cost and earth-abundant non-noble metals can also act as electron- transfer mediators to modify photocatalysts. However, as almost all non-noble metals lack the interfacial catalytic active sites required for the H2-evolution reaction, the enhancement of the photocatalytic performance is limited. Therefore, the development of new interfacial active sites on metal-modified photocatalysts is of considerable importance. In this study, to enhance the photocatalytic evolution of H2 by Ni-modified TiO2, the formation of NiSx as interfacial active sites was promoted on the surface of Ni nanoparticles. Specifically, the co-modified TiO2/Ni-NiSx photocatalysts were prepared via a two-step process involving the photoinduced deposition of Ni on the TiO2 surface and the subsequent formation of NiSx on the Ni surface by a hydrothermal reaction method. It was found that the TiO2/Ni-NiSx photocatalysts exhibited enhanced photocatalytic H2-evolution activity. In particular, TiO2/Ni-NiSx(30%) showed the highest photocatalytic rate (223.74 μmol h.1), which was greater than those of TiO2, TiO2/Ni, and TiO2/NiSx by factors of 22.2, 8.0, and 2.2, respectively. The improved H2-evolution performance of TiO2/Ni-NiSx could be attributed to the excellent synergistic effect of Ni and NiSx, where Ni nanoparticles function as effective mediators to transfer electrons from the TiO2 surface and NiSx serves as interfacial active sites to capture H+ ions from solution and promote the interfacial H2-evolution reaction. The synergistic effect of the non-noble metal cocatalyst and the interfacial active sites may provide new insights for the design of highly efficient photocatalytic materials.展开更多
Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation re...Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.展开更多
Iron porphyrins have high activity and selectivity for electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in nonaqueous solutions,but they usually display poor or moderate selectivity for CO_(2)RR in aqueous solutions...Iron porphyrins have high activity and selectivity for electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in nonaqueous solutions,but they usually display poor or moderate selectivity for CO_(2)RR in aqueous solutions because of the competitive hydrogen evolution reaction.Using water as the electrocatalytic reaction solvent is more favored because not only it is cheap,green and abundant but also it can sufficiently provide protons required for CO_(2)RR.Therefore,developing Fe porphyrins as electrocatalysts for efficient and selective CO_(2)RR in aqueous solutions is of both fundamental and practical significance.Herein,we report the design and synthesis of Fe porphyrin 1 with an appended guanidyl group and its electrocatalytic features for CO_(2)RR in both nonaqueous and aqueous solutions.In acetonitrile,Fe porphyrin 1 and its guanidyl-free analogue,tetrakis(3,4,5-trimethoxyphenyl)porphyrin 2,are both efficient for electrocatalytic CO_(2)-to-CO conversion,but the turnover frequency with 1(3.9´10^(5)s^(-1))is one order of magnitude larger than that with 2(1.7´10^(4)s^(-1)),showing the critical role of the appended guanidyl group in improving electrocatalytic CO_(2)RR activity.More importantly,in 0.1 mol L^(-1)KHCO_(3)aqueous solutions,1 showed very high selectivity for electrocatalytic CO_(2)-to-CO conversion with a Faradaic efficiency of 96%,while 2 displayed a Faradaic efficiency of 65%for the CO_(2)-to-CO conversion.This work is of significance to show the effect of appended guanidyl group on improving both activity and selectivity of Fe porphyrins for CO_(2)RR electrocatalysis.展开更多
Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and bett...Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and better brightening effect than Gd@C82(OH)x, in Tl-weighted MR images in vivo. This is a result of the proton relaxivity from the original gadofullerenes, which retained a perfect carbon cage structure and so might completely avoid the release of Gd^3+ ions. A "secondary spin-electron transfer" relaxation mechanism was proposed to explain how the encaged Gd^3+ ions of carbon nanohybrids interact with the surrounding water molecules. This approach opens new opportunities for developing highly efficient and low toxicity MRI contrast agents.展开更多
A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic ...A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.展开更多
基金supported by the National Natural Science Foundation of China(21477094)the Fundamental Research Funds for the Central Universities(WUT 2017IB002)~~
文摘The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, low-cost and earth-abundant non-noble metals can also act as electron- transfer mediators to modify photocatalysts. However, as almost all non-noble metals lack the interfacial catalytic active sites required for the H2-evolution reaction, the enhancement of the photocatalytic performance is limited. Therefore, the development of new interfacial active sites on metal-modified photocatalysts is of considerable importance. In this study, to enhance the photocatalytic evolution of H2 by Ni-modified TiO2, the formation of NiSx as interfacial active sites was promoted on the surface of Ni nanoparticles. Specifically, the co-modified TiO2/Ni-NiSx photocatalysts were prepared via a two-step process involving the photoinduced deposition of Ni on the TiO2 surface and the subsequent formation of NiSx on the Ni surface by a hydrothermal reaction method. It was found that the TiO2/Ni-NiSx photocatalysts exhibited enhanced photocatalytic H2-evolution activity. In particular, TiO2/Ni-NiSx(30%) showed the highest photocatalytic rate (223.74 μmol h.1), which was greater than those of TiO2, TiO2/Ni, and TiO2/NiSx by factors of 22.2, 8.0, and 2.2, respectively. The improved H2-evolution performance of TiO2/Ni-NiSx could be attributed to the excellent synergistic effect of Ni and NiSx, where Ni nanoparticles function as effective mediators to transfer electrons from the TiO2 surface and NiSx serves as interfacial active sites to capture H+ ions from solution and promote the interfacial H2-evolution reaction. The synergistic effect of the non-noble metal cocatalyst and the interfacial active sites may provide new insights for the design of highly efficient photocatalytic materials.
基金supported by the National Key R&D Program of China(No.2018YFA0209100 and No.2017YFA0303703)the National Natural Science Foundation of China(No.21922302,No.21873047,No.91850105,and No.91833305)+1 种基金the Fundamental Research Funds for the Central Universities(No.020414380126)Chun-feng Zhang acknowledges financial support from the Tang Scholar Program。
文摘Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.
文摘Iron porphyrins have high activity and selectivity for electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in nonaqueous solutions,but they usually display poor or moderate selectivity for CO_(2)RR in aqueous solutions because of the competitive hydrogen evolution reaction.Using water as the electrocatalytic reaction solvent is more favored because not only it is cheap,green and abundant but also it can sufficiently provide protons required for CO_(2)RR.Therefore,developing Fe porphyrins as electrocatalysts for efficient and selective CO_(2)RR in aqueous solutions is of both fundamental and practical significance.Herein,we report the design and synthesis of Fe porphyrin 1 with an appended guanidyl group and its electrocatalytic features for CO_(2)RR in both nonaqueous and aqueous solutions.In acetonitrile,Fe porphyrin 1 and its guanidyl-free analogue,tetrakis(3,4,5-trimethoxyphenyl)porphyrin 2,are both efficient for electrocatalytic CO_(2)-to-CO conversion,but the turnover frequency with 1(3.9´10^(5)s^(-1))is one order of magnitude larger than that with 2(1.7´10^(4)s^(-1)),showing the critical role of the appended guanidyl group in improving electrocatalytic CO_(2)RR activity.More importantly,in 0.1 mol L^(-1)KHCO_(3)aqueous solutions,1 showed very high selectivity for electrocatalytic CO_(2)-to-CO conversion with a Faradaic efficiency of 96%,while 2 displayed a Faradaic efficiency of 65%for the CO_(2)-to-CO conversion.This work is of significance to show the effect of appended guanidyl group on improving both activity and selectivity of Fe porphyrins for CO_(2)RR electrocatalysis.
文摘Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and better brightening effect than Gd@C82(OH)x, in Tl-weighted MR images in vivo. This is a result of the proton relaxivity from the original gadofullerenes, which retained a perfect carbon cage structure and so might completely avoid the release of Gd^3+ ions. A "secondary spin-electron transfer" relaxation mechanism was proposed to explain how the encaged Gd^3+ ions of carbon nanohybrids interact with the surrounding water molecules. This approach opens new opportunities for developing highly efficient and low toxicity MRI contrast agents.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(Grant No. 10625419)the National Natural Science Foundation of China(Grant Nos. 90922033 and 10934008)+1 种基金the Ministry of Science and Technology of China (Grant Nos.2012CB932900 and 2013CB933401)the Chinese Academy of Sciences,China,the DFG and the state of Saxony-Anhalt,Germany
文摘A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.